Voorwoord

Voor u ligt het derde rapport van het project ‘Oog voor oogst’ met de resultaten van traject D. Dit laatste traject is uitgevoerd door twee vierdejaarsstudenten van HAS Den Bosch in het kader van hun afstudeerproject. In traject D is gewerkt aan de verdere ontwikkeling van de oogstvoorspellingsmodellen.

Dit verslag is bedoeld voor de landelijke commissie paprika en alle andere mensen die betrokken zijn bij het onderzoek naar oogstvoorspelling bij paprika.

Onze dank gaat uit naar de heer M. van Ruijven voor zijn inbreng en de openstelling van zijn bedrijf tijdens het project en de heer J. den Besten voor zijn begeleiding tijdens het project. Bovendien gaat onze dank uit naar mevrouw J. Klap en de heer K. Zuidgeest voor hun inbreng tijdens het project. Ten slotte willen wij onze dank betuigen aan de heer T. Hydra voor zijn nuttige informatie met betrekking tot oogstvoorspelling.

’s-Hertogenbosch, juli 2005

Mark Geuijen
Danny Monté
# Inhoudsopgave

**VOORWOORD** ........................................................................................................................................... 1

**SAMENVATTING** ......................................................................................................................................... 5

**1 INLEIDING** ............................................................................................................................................... 7

**2 ANALYSE DATASET 2004** ...................................................................................................................... 9

  2.1 Relatie tussen vruchtparameters en uitgroeiduur ................................................................................ 9
    2.1.1 Inleiding .................................................................................................................................................. 9
    2.1.2 Materiaal en methode .......................................................................................................................... 9
    2.1.3 Resultaten ............................................................................................................................................. 9
    2.1.4 Conclusie ............................................................................................................................................... 11
    2.1.5 Aanbevelingen ..................................................................................................................................... 11

  2.2 Relatie tussen vruchtparameters ......................................................................................................... 11
    2.2.1 Inleiding ................................................................................................................................................ 11
    2.2.2 Materiaal en methode ........................................................................................................................ 11
    2.2.3 Resultaten ........................................................................................................................................... 12
    2.2.4 Conclusie ............................................................................................................................................ 12
    2.2.5 Aanbevelingen ................................................................................................................................... 12

  2.3 Relatie tussen plant, stengel, zetsel en vruchtwicht ............................................................................ 13
    2.3.1 Inleiding ............................................................................................................................................... 13
    2.3.2 Materiaal en methode ........................................................................................................................ 13
    2.3.3 Resultaten .......................................................................................................................................... 13
    2.3.4 Conclusie .......................................................................................................................................... 15
    2.3.5 Aanbevelingen .................................................................................................................................. 15

  2.4 Relatie tussen vruchtparameters en zettingsdatum ............................................................................ 16
    2.4.1 Inleiding ............................................................................................................................................... 16
    2.4.2 Materiaal en methode ........................................................................................................................ 16
    2.4.3 Resultaten .......................................................................................................................................... 16
    2.4.4 Conclusie .......................................................................................................................................... 18
    2.4.5 Aanbevelingen .................................................................................................................................. 18

  2.5 Relatie tussen zettingsduur/uitgroeiduur en vruchtsortering ............................................................... 18
    2.5.1 Inleiding ............................................................................................................................................... 18
    2.5.2 Materiaal en methode ........................................................................................................................ 19
    2.5.3 Resultaten .......................................................................................................................................... 19
    2.5.4 Conclusie .......................................................................................................................................... 20

**3 TEMPERATUUR- EN LICHTSOM** ......................................................................................................... 21

  3.1 Temperatuursom .................................................................................................................................... 21
    3.1.1 Inleiding ............................................................................................................................................. 21
    3.1.2 Materiaal en methode ........................................................................................................................ 21
    3.1.3 Resultaten .......................................................................................................................................... 21
    3.1.4 Discussie .......................................................................................................................................... 30
    3.1.5 Conclusies ........................................................................................................................................ 31
    3.1.6 Aanbevelingen ................................................................................................................................ 31

  3.2 Lichtsom .................................................................................................................................................. 31
    3.2.1 Inleiding ............................................................................................................................................ 31
    3.2.2 Materiaal en methode ........................................................................................................................ 31
    3.2.3 Resultaten ........................................................................................................................................... 32
    3.2.4 Conclusies ........................................................................................................................................ 36
    3.2.5 Aanbevelingen ................................................................................................................................ 36
<table>
<thead>
<tr>
<th>Bijlage</th>
<th>Titel</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BiJlage 1 Frequentietabel Doorkleurduur</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>BiJlage 2 Gebruikershandleiding Model A</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>BiJlage 4 Gewichtsvoorspelling</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>BiJlage 5 Duur Diameter Constant - Oogst</td>
<td>76</td>
</tr>
</tbody>
</table>
**Samenvatting**

Het project ‘Oog voor oogst’ heeft betrekking op het ontwikkelen van een oogstvoorspellingsmodel voor paprika’s. Het doel van het voorspellen van de oogst is het inspelen op en informeren van de markt en het plannen van de arbeid. Voor het Traject D heeft dit geleid tot de volgende doelstelling:
Het maken van een praktisch, goede en nauwkeurige oogstvoorspeller die in de praktijk zinvol te gebruiken is.

Tussen vruchtdiameter en vruchtgewicht is een goede correlatie gevonden. Op basis van regressieanalyse is een formule opgesteld, waarmee met behulp van de diameter bij oogst het vruchtgewicht geschat kan worden. Deze formule luidt:

\[ \text{Vruchtgewicht} = 4,445 \times \text{vruchtdiameter} - 171,6 \]

Tussen het gemiddeld vruchtgewicht per zetsel per stengel en het aantal vruchten per zetsel per stengel bestaat een negatief verband. Dit betekent dat wanneer er minder vruchten per zetsel op een stengel zitten het gemiddeld vruchtgewicht hoger is. Omdat het een zwak verband betreft wordt niet aanbevolen het oogstmodel hiervoor aan te passen. Grovere vruchten doen er niet langer over om te zetten of uit te groeien dan minder grove vruchten. Dit betekent dat er niet gesteld kan worden dat grove vruchten vaker last hebben van vruchtrot dan fijnere vruchten.

De gemiddelde ruimte-temperatuursom is 1070 graaddagen, met een spreiding tussen de 825 en 1522 graaddagen. De gemiddelde planttemperatuursom is 1026 graaddagen, met een spreiding van 790 en 1460 graaddagen. Het gemiddelde van de totale vruchtlichtsom bedraagt 58793 ‘joulesdagen’. De spreiding tussen de vruchtlichtsommen varieert van 39378 en 93496 ‘joulesdagen’. Het voorspellen van de uitgroeiduur op basis van temperatuursom of lichtsom vertoont te grote onnauwkeurigheden. Daarom wordt aanbevolen om niet op basis van temperatuur- of lichtsom de uitgroeiduur te voorspellen.

De doorkleurduur van vruchten na het moment hardgroen loopt uiteen van 7 dagen tot 35 dagen. Daarbij neemt een groot deel van de vruchten naar het moment hardgroen nog in diameter toe. Deze diametertoename ligt grotendeels tussen de 0 en 10 mm. Aangezien de diameter nog toeneemt na het moment hardgroen, kan het vruchtgewicht niet voorspeld worden met de diameter van de vruchten op dit moment. Uit de resultaten blijkt verder dat meer dan 55 % van de vruchten van sorteringklasse verandert. Dit betekent dat het voorspellen van sorteringklasse niet mogelijk is op basis van de diameter op het moment hardgroen.

Uit de vergelijking van een viertal ontwikkelde modellen blijkt dat tweewekelijks registreren in combinatie met gescheiden registratie van zetting aan hoofd- en zijstengels de nauwkeurigste voorspellingen oplevert. Gemiddeld genomen heeft het model een afwijking van 32% met een wekelijkse afwijking van minimaal 1% en maximaal 63%.
De onnauwkeurigheden in de voorspellingen zijn ontstaan door een drietal oorzaken. Ten eerste is de gemiddelde uitgroeiduur in 2005 langer dan in 2004. Ten tweede doordat de uitgroeipercentages per zettingsdatum grote verschillen vertonen ten opzichte van de gemiddelde percentages waarmee de modellen rekenen. Als laatste is gebleken dat de registratieveldjes niet altijd representatief waren. In de veldjes is minder zetting geteld waardoor uiteindelijk 17,5% minder kilo’s zijn geoogst ten opzichte van de gehele afdeling.

Aangezien het gebruik van model A bij het voorspellen van de oogst grote onnauwkeurigheden oplevert, lijkt het nuttig om in het najaar van 2005 enkele aanpassingen aan het model te doen. Er wordt daarbij aanbevolen om verder onderzoek te doen naar mogelijke aanpassingen als zelfcorrectie en een module ter compensatie voor veranderingen in de representativiteit van de registratieveldjes.
1 Inleiding
Het project 'Oog voor oogst' heeft betrekking op het ontwikkelen van een oogstvoorspellingsmodel voor paprika's.

Uit de ervaringen van telers blijkt dat de paprika een lastig gewas is om te sturen. Dit wordt mede veroorzaakt doordat de plant relatief langzaam reageert op wijzigingen in de omgeving, zoals temperatuur en vocht. Met een oogstvoorspeller kan vooraf een beeld gevormd worden op welke momenten de producten gereed zijn om op de markt te brengen. Het doel van oogst voorspellen is, het inspelen en informeren van de markt en het plannen van de arbeid. Dit heeft geleid tot de volgende doelstelling:

*Het ontwikkelen van een gebruikersvriendelijk oogstvoorspellingsprogramma, voor de teelt van gele Derby paprika's, waarbij het aantal te oogsten vruchten en het vruchtgewicht 1 week van tevoren nauwkeurig voorspeld kunnen worden.*

Een deel van de uit de doelstelling voortvloeiende onderzoeksvragen is reeds beantwoord in de rapportage van januari 2005. In dit rapport worden de volgende onderzoeksvragen beantwoord:

1. Is er een relatie tussen de omvang van de vrucht en de uitgroeiduur?
2. Is er een relatie tussen de lengte van de vrucht en zettingsdatum?
3. Is er een relatie tussen vruchtgewicht en omvang van het zetsel?
4. Is er een relatie tussen de duur van fase 0-2 of fase 2-oogst voor de verschillende vruchtsorteringen (vruchtrots komt vaker bij grote vruchten voor)?
5. Is er een relatie tussen vruchtlengte en -breedte en uitgroeiduur?
6. Is het mogelijk de temperatuursom te gebruiken als voorspeller voor de oogst?
7. Is er een relatie, en zo ja welke, tussen lichtsom en uitgroeiduur?
8. Indien er een relatie is tussen lichtsom en uitgroeiduur, is deze dan bruikbaar voor het voorspellen van de oogst.
9. Is het mogelijk hardgroen nauwkeurig (ten opzichte van oogstdatum) te bepalen door tweewekelijkse registratie aan proefveldjes?
10. Hoe lang duurt het traject van hardgroen naar oogstbaar?
11. Is het mogelijk op basis van waarnemingen aan hardgroene vruchten de oogst nauwkeurig te voorspellen?
12. Welke van onderstaande modellen voorspelt de oogst in de praktijk het beste:
   - Een keer per week registratie via huidig praktijkmodel?
   - Een keer per week registratie via model met dezelfde percentages voor vruchten van hoofdstengel en zij scheuten?
   - Een keer per week registratie via model met verschillende percentages voor vruchten van hoofdstengel en zij scheuten?
   - Een keer registratie in/vanaf hardgroen stadium?
   - Twee keer per week registratie via model met dezelfde percentages voor vruchten van hoofdstengel en zij scheuten?
   - Twee keer per week registratie via model met verschillende percentages voor vruchten van hoofdstengel en zij scheuten?
   - Twee keer registratie in/vanaf hardgroen stadium?
De opbouw van dit rapport is als volgt: in hoofdstuk 2 wordt aan de hand van de dataset uit 2004 een aantal resterende vragen uit het plan van aanpak beantwoord. In hoofdstuk 3 wordt bekeken in hoeverre de temperatuur- en lichtsom bruikbaar zijn voor het voorspellen van de oogst. In hoofdstuk 4 wordt het vervolg op de proef hardgroen beschreven en in hoofdstuk 5 wordt de gebruikte oogstvoorspeller voor paprika bekeken. Er wordt daarbij uitgebreid stilgestaan bij de vergelijking tussen de gerealiseerde productie en de voorspellingen. Tot slot staan in hoofdstuk 6, 7 en 8 achtereenvolgens de einddiscussie, eindconclusies en uiteindelijke aanbevelingen.
2 Analyse dataset 2004


2.1 Relatie tussen vruchtparameters en uitgroeiduur

2.1.1 Inleiding

Het doel van deze paragraaf is de relatie in beeld te brengen tussen de uitgroeiduur van vruchten en drie vruchtparameters namelijk diameter, lengte en vruchtgewicht. De achtergrond hierachter is het idee dat de uitgroeiduur van korte vruchten verschilt van de uitgroeiduur van lange vruchten. Dit idee geldt ook voor grove/fijne vruchten en zware/lichte vruchten. Als de uitgroeiduur verschilt bij bepaalde vruchten, dan kan op basis van de vruchtparameters het model nauwkeuriger voorspellen.

Voor de beantwoording van de vraag of er een relatie is tussen vruchtparameters en uitgroeiduur zijn drie hypothesen opgesteld:

- Er is geen verband tussen de uitgroeiduur en de diameter van vruchten;
- Er is geen verband tussen de uitgroeiduur en de lengte van vruchten;
- Er is geen verband tussen de uitgroeiduur en het gewicht van vruchten.

2.1.2 Materiaal en methode

Voor de beantwoording van bovenstaande hypothesen zijn uit de dataset van 2004 de vruchten gefilterd waarvan de benodigde vruchtparameters bekend zijn. Per hypothese is de correlatie berekend.

2.1.3 Resultaten

In figuur 2.1 is de vruchtdiameter uitgezet tegen de uitgroeiduur van de vruchten. De correlatie tussen vruchtdiameter en uitgroeiduur is 0,046 bij een steekproefomvang van 473 vruchten. $R^2$ is 0,002.

![Figuur 2.1: Relatie tussen vruchtdiameter en uitgroeiduur.](image)
In figuur 2.2 is de vruchtlengte uitgezet tegen de uitgroeiduur van de vruchten. De correlatie tussen vruchtlengte en uitgroeiduur bedraagt -0,146 bij een steekproefomvang van 461 vruchten. R² is hierbij 0,021.

Figuur 2.2: Relatie tussen vruchtlengte en uitgroeiduur.

In figuur 2.3 is het vruchtgewicht uitgezet tegen de uitgroeiduur van de vruchten. De correlatie tussen vruchtgewicht en uitgroeiduur is -0,065 bij een steekproefomvang van 461 vruchten. R² is hierbij 0,004.

Figuur 2.3: Relatie tussen vruchtgewicht en uitgroeiduur.
2.1.4 Conclusie
De uitgroeiduur van de vruchten is niet gecorreleerd aan de vruchtdiameter van de vruchten, er is dus geen verband tussen uitgroeiduur en vruchtdiameter. Er is eveneens geen correlatie gevonden tussen de uitgroeiduur en het vruchtgewicht, dus is er geen verband tussen deze twee variabelen.

Tussen de uitgroeiduur en de vruchtlengte is wel een (zwak) negatief verband gevonden. Bij dit verband zou regressieanalyse toegepast kunnen worden. Echter, het verband is dermate zwak dat bij de toepassing van regressieanalyse het betrouwbaarheidsinterval zeer breed wordt. Dit brede interval zorgt ervoor dat bij het doen van voorspellingen zeer ruime marges ontstaan, waardoor de voorspellingen veel te grof worden.

2.1.5 Aanbevelingen
Aanbevolen wordt om de drie vruchtparameters, diameter, lengte en gewicht, niet te gebruiken in een model om de uitgroeiduur van vruchten te voorspellen.

2.2 Relatie tussen vruchtparameters

2.2.1 Inleiding
In het rapport van Den Besten en Elshout (2005) over oogstvoorspelling in paprika zijn de correlaties tussen de vruchtparameters berekend. Hieruit is geconcludeerd dat er een relatie is tussen vruchtinhoud en vruchtgewicht. Deze relatie kan gebruikt worden bij de voorspelling van het vruchtgewicht, aangezien deze door middel van regressieanalyse te bepalen is. Er werden geen relaties gevonden tussen vruchtgewicht, vruchtlengte en vruchtdiameter.

Om de vruchtinhoud te berekenen moeten twee vruchtparameters gemeten worden, namelijk de vruchtdiameter en de vruchtlengte. In de praktijk blijkt dit een tijdrossende klus te zijn. In een discussie over de praktische toepassing van de correlatie bij gewichtsvoorspelling ontstond de volgende vraag. “Waarom is er wel een correlatie tussen vruchtgewicht en vruchtinhoud en niet tussen vruchtgewicht en vruchtdiameter”? Deze vraag ontstond aangezien de vruchtdiameter gebruikt wordt om de vruchtinhoud te berekenen.

Na bestudering van figuur 9 in het rapport van Den Besten en Elshout (2005) is besloten om de correlaties opnieuw te berekenen, omdat het vermoeden bestond dat er een fout was gemaakt. Deze fout is tijdens de analyse daadwerkelijk geconstateerd. Het doel van deze paragraaf is het rectificeren van de conclusie uit het rapport en aan te geven hoe de nieuwe inzichten gebruikt kunnen worden bij de gewichtsvoorspelling.

2.2.2 Materiaal en methode
Voor de berekening van de correlaties tussen de vruchtparameters zijn uit het databestand van 2004 alle vruchten gefilterd waarvan de vruchtparameters bekend zijn. Vervolgens zijn de correlaties (opnieuw) berekend.
2.2.3 Resultaten

In tabel 2.1 zijn de correlaties tussen de verschillende vruchtparameters weergegeven. De grafieken waarin onderstaande combinaties tegen elkaar zijn uitgezet zijn terug te vinden in het rapport van den Besten en Elshout uit 2005 op pagina's 20 t/m 22.

<table>
<thead>
<tr>
<th>Correlaties</th>
<th>N</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vruchtlengte - vruchtdiameter</td>
<td>-0,033</td>
<td>691</td>
</tr>
<tr>
<td>Vruchtlengte - vruchtgewicht</td>
<td>0,273</td>
<td>691</td>
</tr>
<tr>
<td>Vruchtdiameter - vruchtgewicht</td>
<td>0,850</td>
<td>691</td>
</tr>
<tr>
<td>Diameter x lengte - vruchtgewicht</td>
<td>0,737</td>
<td>691</td>
</tr>
<tr>
<td>Vruchthout - vruchtgewicht</td>
<td>0,886</td>
<td>691</td>
</tr>
</tbody>
</table>

2.2.4 Conclusie

Zoals in tabel 2.1 is weergegeven bestaat er geen relatie tussen vruchtlengte/vruchtdiameter, dit is conform de conclusies van den Besten en Elshout uit 2005. Tussen vruchtlengte en vruchtgewicht kan op basis van de grootte van de steekproef geconcludeerd worden dat er een (zwak) positief verband is.

Tussen vruchtdiameter/vruchtgewicht, diameter x lengte/vruchtgewicht en vruchthout/vruchtgewicht zijn goede correlaties gevonden. Den Besten en Elshout concludeerden in 2005 dat er alleen een correlatie was tussen diameter x lengte/vruchtgewicht en vruchthout/vruchtgewicht. Tussen vruchtdiameter en vruchtgewicht werd geen relatie gevonden terwijl deze wel duidelijk aanwezig is.

De relatie tussen vruchtdiameter en vruchtgewicht betekent dat het vruchtgewicht op basis van regressieanalyse met de vruchtdiameter geschat kan worden. In de praktijk betekent dit dat de registratie van vruchtlengte overbodig wordt, waardoor de registratie minder tijdrovend zal zijn.

Het vruchtgewicht kan geschat worden met behulp van de volgende formule:

\[ Vruchtgewicht = 4,445 \times vruchtdiameter – 171,6 \]

Deze formule is verkregen door het toepassen van regressieanalyse op de data uit 2004.

2.2.5 Aanbevelingen

Bij het voorspellen van het vruchtgewicht kan gebruik gemaakt worden van de formule die opgesteld is door Den Besten en Elshout in 2005. Hierbij wordt gebruikt gemaakt van de vruchthout, waarbij het noodzakelijk is om de vruchtdiameter en vruchtlengte te meten. Uit voorgaande conclusie blijkt dat voorspellen van vruchtgewicht ook mogelijk is met behulp van de vruchtdiameter. Dit betekent dat alleen de vruchtdiameter gemeten moet worden waardoor de registratie minder tijd vergt.
Aanbevolen wordt dan ook om bij het voorspellen van het vruchtgewicht de vruchtdiameter te meten, waarna met behulp van bovenstaande formule het gewicht berekend kan worden. Voor het model betekent dit dat er een invoerveld voor vruchtdiameters gemaakt moet worden. Vervolgens moet het model uiteraard wat het vruchtgewicht wordt.

2.3 Relatie tussen plant, stengel, zetsel en vruchtgewicht

2.3.1 Inleiding
Telers zijn van mening dat alle planten in principe dezelfde hoeveelheid assimilaten aanmaken. Daardoor wordt aangenomen dat planten, stengels en/of zetsels met veel vruchten gemiddeld een lager vruchtgewicht hebben dan planten, stengels en/of zetsels die minder vruchten hebben.

In deze paragraaf wordt onderzocht of deze gedachtgang statistisch onderbouwd kan worden. Daarbij wordt bekeken of deze informatie gebruikt kan worden bij het ontwikkelen van een nauwkeurig oogstmodel.

Voor de beantwoording van bovenstaande vraag zijn de volgende drie hypothesen opgesteld:

- Er is geen verband tussen het gemiddelde vruchtgewicht per plant en het aantal vruchten per plant;
- Er is geen verband tussen het gemiddelde vruchtgewicht per stengel en het aantal vruchten per stengel;
- Er is geen verband tussen het gemiddelde vruchtgewicht per zetsel per stengel en het aantal vruchten per zetsel per stengel.

2.3.2 Materiaal en methode
Voor de berekeningen van het gemiddelde vruchtgewicht per plant, stengel en zetsel is de bestaande dataset uit 2004 gebruikt. Hieruit zijn de benodigde vruchten gefilterd en de gemiddelde vruchtgewichten berekend. Vervolgens zijn met het programma SPSS de correlaties tussen vruchtgewicht en plant, stengel of zetsel berekend.

2.3.3 Resultaten
In figuur 2.4 is het aantal vruchten per plant uitgezet tegen het gemiddelde vruchtgewicht per plant. In figuur 2.5 is het aantal vruchten per stengel uitgezet tegen het gemiddelde vruchtgewicht per stengel. Tot slot is in figuur 2.6 het aantal vruchten per zetsel uitgezet tegen het gemiddelde vruchtgewicht per zetsel.
De correlatie tussen aantal vruchten per plant en het gemiddelde vruchtgewicht is 0,1911. De steekproefomvang is 24 en $R^2$ is 0,037.

De correlatie tussen aantal vruchten per stengel en het gemiddelde vruchtgewicht is -0,0688. De steekproefomvang is 72 en $R^2$ is 0,005.
Figuur 2.6: Relatie tussen aantal vruchten en gemiddelde vruchtgewicht per zetsel.

De correlatie tussen aantal vruchten per zetsel en het gemiddelde vruchtgewicht is -0,3492. De steekproefomvang is 210 en $R^2$ is 0,122.

2.3.4 Conclusie
Er bestaat geen relatie tussen het gemiddelde vruchtgewicht per plant en het aantal vruchten per plant. Verder bestaat er geen verband tussen het gemiddelde vruchtgewicht per stengel en het aantal vruchten per stengel.

Tussen het gemiddelde vruchtgewicht per zetsel per stengel en het aantal vruchten per zetsel per stengel bestaat een (redelijk) negatief verband. Dit betekent dat wanneer er minder vruchten aan een zetsel op een stengel zitten het vruchtgewicht hoger is. Deze conclusie is in overeenstemming met de conclusie uit een onderzoek van Jansen en Zondag, dat gepubliceerd is in 2004 (p 30-35).

De (zwakke) relatie tussen vruchtgewicht en het aantal vruchten per zetsel per stengel kan in een praktisch model niet gebruikt worden.

2.3.5 Aanbevelingen
Aangezien er geen relatie bestaat tussen het aantal vruchten per plant en het vruchtgewicht zijn er geen aanknopingspunten om het model nauwkeuriger te maken. Ditzelfde geldt voor het aantal vruchten per stengel en het vruchtgewicht.

Verder wordt aanbevolen de zwakke relatie tussen het gemiddelde vruchtgewicht per zetsel per stengel en het aantal vruchten per zetsel per stengel niet te gebruiken bij het voorspellen van vruchtgewicht.
2.4 Relatie tussen vruchtparameters en zettingsdatum

2.4.1 Inleiding
Een paprikagewas zet jaarlijks verschillende zetsels, elk zetsel wordt in een bepaalde periode (zettingsdatum) gezet. Aangezien zetsels van elkaar kunnen verschillen met betrekking tot grofheid van de vruchten, vruchtgewicht en lengte van de vruchten is de vraag ontstaan of er een relatie is tussen deze drie parameters en de zettingsdatum.

Mocht er een relatie zijn dan wordt bekeken op welke wijze deze in het model gebruikt kan worden om dit nauwkeuriger te maken.

2.4.2 Materiaal en methode
Om deze vraag te beantwoorden zijn de volgende drie hypothesen opgesteld:
- Er is geen verband tussen de zettingsdatum en de lengte van vruchten;
- Er is geen verband tussen de zettingsdatum en de diameter van vruchten;
- Er is geen verband tussen de zettingsdatum en het vruchtgewicht van vruchten.

Voor deze analyse is de dataset uit 2004 opnieuw gebruikt waarbij de juiste gegevens uit de dataset zijn gefilterd. Met deze gegevens zijn de correlaties tussen de drie vruchtparameters en de zettingsdatum berekend.

2.4.3 Resultaten
In figuur 2.7 is de diameter van de vrucht uitgezet tegen de zettingsdatum van desbetreffende vrucht. In figuur 2.8 is de vruchtlengte uitgezet tegen de zettingsdatum van de vrucht en tot slot is in figuur 2.9 het vruchtgewicht uitgezet tegen de zettingsdatum.

In tabel 2.2 staan de correlaties, de steekproefgrootte en $R^2$ per onderzochte combinatie van de vruchtparameters en zettingsdatum weergegeven.

Tabel 2.2: Correlaties tussen vruchtdiameter, vruchtlengte of vruchtgewicht en de zettingsdatum.

<table>
<thead>
<tr>
<th>Correlatie</th>
<th>N</th>
<th>$R^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zettingsdatum - diameter</td>
<td>-0,176</td>
<td>461</td>
</tr>
<tr>
<td>Zettingsdatum - lengte</td>
<td>-0,027</td>
<td>461</td>
</tr>
<tr>
<td>Zettingsdatum - vruchtgewicht</td>
<td>-0,196</td>
<td>461</td>
</tr>
</tbody>
</table>
Figuur 2.7: Relatie tussen vruchtdiameter en de zettingsdatum van de vrucht.

Figuur 2.8: Relatie tussen vruchtlengte en de zettingsdatum van de vrucht.
2.4.4 Conclusie
Er is geen relatie tussen de zettingsdatum en de lengte van de vrucht. Tussen zettingsdatum/diameter en zettingsdatum/vruchtgewicht zijn in beide gevallen (zwakke) negatieve relaties gevonden vanwege de grootte van de steekproef.

2.4.5 Aanbevelingen
Aangezien er geen duidelijke relatie is gevonden tussen de vruchtparameters en de zettingsdatum, is het niet mogelijk om de zettingsdatum te gebruiken voor de voorspelling van sortering en vruchtgewicht.

2.5 Relatie tussen zettingsduur/uitgroeiduur en vruchtsortering

2.5.1 Inleiding
In deze paragraaf wordt kort de relatie tussen vruchtsortering en zettingsduur/uitgroeiduur besproken. Hierbij wordt met zettingsduur de duur van bloei tot fase 2 (zetting) bedoeld. Er wordt aandacht geschonken aan deze relatie vanwege het steeds groter wordende probleem van vruchtrot.

Vruchtrot komt voornamelijk voor bij grove vruchten, aangenomen wordt dat grove vruchten er langer over doen om te zetten en/of uit te groeien omdat ze grover zijn. Het idee is dat de schimmel die vruchtrot veroorzaakt hierdoor langer de kans heeft om de vrucht aan te tasten, waardoor alleen grove vruchten last hebben van vruchtrot.

Voor het beantwoorden van bovenstaande gedachtengang zijn de volgende twee hypothesen opgesteld:
- Er is geen verband tussen de vruchtdiameter en de zettingsduur;
- Er is geen verband tussen de vruchtdiameter en de uitgroeiduur.
2.5.2 Materiaal en methode
Uit de dataset van 2004 zijn de juiste data gefilterd waarmee vervolgens de correlatie is uitgerekend tussen vruchtdiameter en zettingsduur/uitgroeiduur.

2.5.3 Resultaten
In figuur 2.10 is de zettingsduur van een vrucht uitgezet tegen de diameter van de vrucht. De uitgroeiduur van een vrucht uitgezet tegen de diameter van de vrucht is te vinden in figuur 2.11.

De correlaties tussen vruchtdiameter en zettingsduur/uitgroeiduur zijn als volgt:

- Correlatie vruchtdiameter - zettingsduur: 0,046 waarbij $R^2$ is 0,002
- Correlatie vruchtdiameter - uitgroeiduur: 0,054 waarbij $R^2$ is 0,003

Bij beide analyses is de steekproefomvang 393 vruchten.

---

Figuur 2.10: Relatie tussen de zettingsduur van een vrucht en de vruchtdiameter.

Figuur 2.11: Relatie tussen de zettingsduur van een vrucht en de vruchtdiameter.
2.5.4 Conclusie

Grovere vruchten doen er niet langer over om te zetten of uit te groeien dan minder grove vruchten. Dit betekent dat er niet gesteld kan worden dat grove vruchten vaker last hebben van vruchtrot dan fijnere vruchten omdat ze langer zetten of langer uitgroeien. De oorzaak van vruchtrot bij grovere vruchten moet dan ook ergens anders in gezocht worden.
3 Temperatuur- en lichtsom


3.1 Temperatuursom

3.1.1 Inleiding

Het doel van dit onderdeel is om aan de hand van de dataset uit 2005, te onderzoeken of de temperatuursom mogelijk te gebruiken als voorspeller voor de oogst. Er wordt bij het bepalen van de temperatuursom voor de uitgroeiduur, gemeten van fase 2 (vrucht 1 cm doorsnede) tot oogstbaar, zowel naar de ruimte- als de planttemperatuur gekeken.

3.1.2 Materiaal en methode

Van in totaal 249 vruchten van het tweede zetsel is de ruimte- en plant-temperatuursom bepaald. Hiervoor zijn de ruimtetemperaturen dagelijks gemeten via een meetbox, de planttemperatuur is dagelijks gemeten via een planttemperatuurmeter. Vervolgens zijn de ruimte- en plantetmaaltemperaturen over de dagen van de vruchtuitgroei gesommeerd per vrucht.


3.1.3 Resultaten

In tabel 3.1 staat een overzicht van de uitgroeiduren van de onderzochte vruchten. De snelste vruchten doen er 39 dagen over, de langzaamste 71 dagen en het grootste deel van de vruchten wordt geoogst tussen 45 en 56 dagen.
Tabel 3.1: Frequentieverdeling van vruchtuitgroeiduren.

<table>
<thead>
<tr>
<th>Vruchtuitgroeiduren in dagen</th>
<th>Aantal vruchten in stuks</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>46</td>
<td>11</td>
</tr>
<tr>
<td>48</td>
<td>16</td>
</tr>
<tr>
<td>49</td>
<td>91</td>
</tr>
<tr>
<td>52</td>
<td>29</td>
</tr>
<tr>
<td>53</td>
<td>25</td>
</tr>
<tr>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>55</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>13</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>61</td>
<td>3</td>
</tr>
<tr>
<td>63</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>5</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
</tr>
</tbody>
</table>

Het gewogen gemiddelde van alle vruchtuitgroeiduren is 50 dagen. Het grootste deel van de vruchten, 91 stuks, is oogstrijp na 49 dagen.

Tabel 3.2: Spreiding in ruimte-temperatuursom van de vruchten die in 49 dagen uitgroeien.

<table>
<thead>
<tr>
<th>Ruimte-temperatuursom in graaddagen</th>
<th>Aantal vruchten in stuks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1023.4</td>
<td>4</td>
</tr>
<tr>
<td>1028.2</td>
<td>1</td>
</tr>
<tr>
<td>1030.5</td>
<td>12</td>
</tr>
<tr>
<td>1039.1</td>
<td>21</td>
</tr>
<tr>
<td>1042.7</td>
<td>21</td>
</tr>
<tr>
<td>1049.6</td>
<td>8</td>
</tr>
<tr>
<td>1049.8</td>
<td>1</td>
</tr>
<tr>
<td>1051.8</td>
<td>18</td>
</tr>
<tr>
<td>1053.2</td>
<td>1</td>
</tr>
<tr>
<td>1058.2</td>
<td>4</td>
</tr>
</tbody>
</table>

Het gewogen gemiddelde van de in tabel 3.2 geanalyseerde vruchten bedraagt 1042,5 graaddagen terwijl het gewogen gemiddelde over alle vruchten 1072 graaddagen bedraagt.
Tabel 3.3: Spreiding in plant-temperatuursom van de vruchten die in 49 dagen uitgroeien.

<table>
<thead>
<tr>
<th>Plant-temperatuursom in graaddagen</th>
<th>Aantal vruchten in stuks</th>
</tr>
</thead>
<tbody>
<tr>
<td>971.2</td>
<td>4</td>
</tr>
<tr>
<td>977.3</td>
<td>1</td>
</tr>
<tr>
<td>981.3</td>
<td>12</td>
</tr>
<tr>
<td>992.0</td>
<td>21</td>
</tr>
<tr>
<td>996.7</td>
<td>21</td>
</tr>
<tr>
<td>1006.5</td>
<td>8</td>
</tr>
<tr>
<td>1007.9</td>
<td>1</td>
</tr>
<tr>
<td>1012.2</td>
<td>18</td>
</tr>
<tr>
<td>1015.1</td>
<td>1</td>
</tr>
<tr>
<td>1021.7</td>
<td>4</td>
</tr>
</tbody>
</table>

Het gewogen gemiddelde van de in tabel 3.3 geanalyseerde vruchten bedraagt 997,6 graaddagen terwijl het gewogen gemiddelde over alle vruchten 1026,1 graaddagen bedraagt.

In tabel 3.4 op pagina 21 is de volledige spreiding in ruimte-temperatuursommen van de onderzochte vruchten weergegeven.

In tabel 3.5 op pagina 22 is de volledige spreiding in plant-temperatuursommen van de onderzochte vruchten weergegeven.
Tabel 3.4: Spreiding in ruimte-temperatuursom van alle geanalyseerde vruchten.

<table>
<thead>
<tr>
<th>Ruimte-temperatuursom in graaddagen</th>
<th>Aantal vruchten in stuks</th>
</tr>
</thead>
<tbody>
<tr>
<td>825.3</td>
<td>2</td>
</tr>
<tr>
<td>883.3</td>
<td>1</td>
</tr>
<tr>
<td>893.7</td>
<td>1</td>
</tr>
<tr>
<td>895.4</td>
<td>1</td>
</tr>
<tr>
<td>900.6</td>
<td>1</td>
</tr>
<tr>
<td>939.9</td>
<td>2</td>
</tr>
<tr>
<td>947.1</td>
<td>5</td>
</tr>
<tr>
<td>947.3</td>
<td>1</td>
</tr>
<tr>
<td>949.0</td>
<td>5</td>
</tr>
<tr>
<td>951.0</td>
<td>9</td>
</tr>
<tr>
<td>959.3</td>
<td>10</td>
</tr>
<tr>
<td>964.7</td>
<td>1</td>
</tr>
<tr>
<td>977.2</td>
<td>5</td>
</tr>
<tr>
<td>985.8</td>
<td>5</td>
</tr>
<tr>
<td>987.4</td>
<td>1</td>
</tr>
<tr>
<td>1012.9</td>
<td>16</td>
</tr>
<tr>
<td>1023.4</td>
<td>4</td>
</tr>
<tr>
<td>1028.2</td>
<td>1</td>
</tr>
<tr>
<td>1030.5</td>
<td>12</td>
</tr>
<tr>
<td>1039.1</td>
<td>21</td>
</tr>
<tr>
<td>1042.7</td>
<td>21</td>
</tr>
<tr>
<td>1049.6</td>
<td>8</td>
</tr>
<tr>
<td>1049.8</td>
<td>1</td>
</tr>
<tr>
<td>1051.8</td>
<td>18</td>
</tr>
<tr>
<td>1053.2</td>
<td>1</td>
</tr>
<tr>
<td>1058.2</td>
<td>4</td>
</tr>
<tr>
<td>1087.2</td>
<td>2</td>
</tr>
<tr>
<td>1094.3</td>
<td>1</td>
</tr>
<tr>
<td>1100.9</td>
<td>15</td>
</tr>
<tr>
<td>1104.6</td>
<td>8</td>
</tr>
<tr>
<td>1111.6</td>
<td>1</td>
</tr>
<tr>
<td>1117.6</td>
<td>3</td>
</tr>
<tr>
<td>1133.1</td>
<td>9</td>
</tr>
<tr>
<td>1136.9</td>
<td>15</td>
</tr>
<tr>
<td>1164.1</td>
<td>3</td>
</tr>
<tr>
<td>1166.5</td>
<td>1</td>
</tr>
<tr>
<td>1170.6</td>
<td>1</td>
</tr>
<tr>
<td>1193.7</td>
<td>1</td>
</tr>
<tr>
<td>1195.0</td>
<td>1</td>
</tr>
<tr>
<td>1197.2</td>
<td>1</td>
</tr>
<tr>
<td>1200.7</td>
<td>8</td>
</tr>
<tr>
<td>1202.7</td>
<td>2</td>
</tr>
<tr>
<td>1228.5</td>
<td>1</td>
</tr>
<tr>
<td>1266.6</td>
<td>1</td>
</tr>
<tr>
<td>1284.2</td>
<td>6</td>
</tr>
<tr>
<td>1313.6</td>
<td>3</td>
</tr>
<tr>
<td>1364.0</td>
<td>3</td>
</tr>
<tr>
<td>1377.5</td>
<td>5</td>
</tr>
<tr>
<td>1522.8</td>
<td>1</td>
</tr>
</tbody>
</table>
Tabel 3.5: Spreiding in plant-temperatuursom van alle geanalyseerde vruchten.

<table>
<thead>
<tr>
<th>Plant-temperatuursom in graaddagen</th>
<th>Aantal vruchten in stuks</th>
</tr>
</thead>
<tbody>
<tr>
<td>788.6</td>
<td>2</td>
</tr>
<tr>
<td>839.3</td>
<td>1</td>
</tr>
<tr>
<td>855.9</td>
<td>1</td>
</tr>
<tr>
<td>858.0</td>
<td>1</td>
</tr>
<tr>
<td>865.0</td>
<td>1</td>
</tr>
<tr>
<td>890.4</td>
<td>2</td>
</tr>
<tr>
<td>901.2</td>
<td>5</td>
</tr>
<tr>
<td>905.0</td>
<td>5</td>
</tr>
<tr>
<td>907.6</td>
<td>9</td>
</tr>
<tr>
<td>914.5</td>
<td>1</td>
</tr>
<tr>
<td>918.9</td>
<td>10</td>
</tr>
<tr>
<td>927.3</td>
<td>1</td>
</tr>
<tr>
<td>933.7</td>
<td>5</td>
</tr>
<tr>
<td>945.7</td>
<td>5</td>
</tr>
<tr>
<td>951.0</td>
<td>1</td>
</tr>
<tr>
<td>965.7</td>
<td>16</td>
</tr>
<tr>
<td>971.2</td>
<td>4</td>
</tr>
<tr>
<td>977.3</td>
<td>1</td>
</tr>
<tr>
<td>981.3</td>
<td>12</td>
</tr>
<tr>
<td>992.0</td>
<td>21</td>
</tr>
<tr>
<td>996.7</td>
<td>21</td>
</tr>
<tr>
<td>1006.5</td>
<td>8</td>
</tr>
<tr>
<td>1007.9</td>
<td>1</td>
</tr>
<tr>
<td>1012.2</td>
<td>18</td>
</tr>
<tr>
<td>1015.1</td>
<td>1</td>
</tr>
<tr>
<td>1021.7</td>
<td>4</td>
</tr>
<tr>
<td>1033.1</td>
<td>2</td>
</tr>
<tr>
<td>1042.0</td>
<td>1</td>
</tr>
<tr>
<td>1050.0</td>
<td>15</td>
</tr>
<tr>
<td>1055.0</td>
<td>8</td>
</tr>
<tr>
<td>1057.4</td>
<td>1</td>
</tr>
<tr>
<td>1076.3</td>
<td>3</td>
</tr>
<tr>
<td>1084.3</td>
<td>9</td>
</tr>
<tr>
<td>1092.8</td>
<td>15</td>
</tr>
<tr>
<td>1113.0</td>
<td>1</td>
</tr>
<tr>
<td>1113.1</td>
<td>1</td>
</tr>
<tr>
<td>1122.2</td>
<td>3</td>
</tr>
<tr>
<td>1142.6</td>
<td>1</td>
</tr>
<tr>
<td>1146.5</td>
<td>1</td>
</tr>
<tr>
<td>1152.5</td>
<td>1</td>
</tr>
<tr>
<td>1153.6</td>
<td>8</td>
</tr>
<tr>
<td>1156.9</td>
<td>2</td>
</tr>
<tr>
<td>1183.5</td>
<td>1</td>
</tr>
<tr>
<td>1217.8</td>
<td>1</td>
</tr>
<tr>
<td>1231.4</td>
<td>6</td>
</tr>
<tr>
<td>1264.1</td>
<td>3</td>
</tr>
<tr>
<td>1314.2</td>
<td>3</td>
</tr>
<tr>
<td>1324.9</td>
<td>5</td>
</tr>
<tr>
<td>1461.0</td>
<td>1</td>
</tr>
</tbody>
</table>
Uit tabel 3.4 op pagina 21 is het volgende op te maken: de ruimte-temperatuursom varieert van 825 tot 1523 graaddagen (een verschil van 33 dagen van 21 °C) en met weglating van de extreme waarden van 951 tot 1137 graaddagen (een verschil van 9 dagen van 21 °C).

Uit tabel 3.5 op pagina 22 is het volgende op te maken: de plant-temperatuursom varieert van 789 tot 1461 graaddagen (een verschil van 32 dagen van 21 °C) en met weglating van de extreme waarden van 908 tot 1093 graaddagen (een verschil van 9 dagen van 21 °C).

Figuur 3.1: Spreiding in ruimte-temperatuursom.

Wanneer figuur 3.1 bekeken wordt, lijkt de ruimte-temperatuursom normaal verdeeld. Met behulp van SPSS is getoetst of dit klopt. In figuur 3.2 is de output van deze analyse gegeven.

\[ H_0 = \text{De ruimte-temperatuursom is normaal verdeeld} \]
\[ H_1 = \text{De ruimte-temperatuursom is niet normaal verdeeld} \]

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th>Normal Parameters</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>249</td>
<td>1072.02</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td>Absolute</td>
<td>0.186</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>2.939</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Figuur 3.2: Output toets normale verdeling van ruimte-temperatuursom.
Uit de output in figuur 3.2 blijkt dat de overschrijdingskans 0,000 is. Deze is lager dan 0,05 wat betekent dat H₀ verworpen dient te worden. Dit houdt in dat de ruimte-temperatuursom niet normaal verdeeld is.

Figuur 3.3: Spreiding in plant-temperatuursom.

Wanneer figuur 3.3 bekeken wordt, lijkt de plant-temperatuursom normaal verdeeld. Met behulp van SPSS is getoetst of dit klopt. In figuur 3.2 is de output van deze analyse gegeven.

<table>
<thead>
<tr>
<th>H₀</th>
<th>De plant-temperatuursom is normaal verdeeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₁</td>
<td>De plant-temperatuursom is niet normaal verdeeld</td>
</tr>
</tbody>
</table>

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th>Plant-temperatuursom fase 2-oogst</th>
<th>Plant-temperatuursom fase 2-oogst</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 249</td>
<td></td>
</tr>
<tr>
<td>Normal Parameters</td>
<td>Mean 1026.143</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation 103.393</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td>Absolute 0.164</td>
</tr>
<tr>
<td></td>
<td>Positive 0.164</td>
</tr>
<tr>
<td></td>
<td>Negative -0.081</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>Asymp. Sig. (2-tailed) 2.589</td>
</tr>
<tr>
<td></td>
<td>Asymp. Sig. (2-tailed) 0.000</td>
</tr>
</tbody>
</table>

Figuur 3.4: Output toets normale verdeling van plant-temperatuursom.

Uit de output in figuur 3.4 blijkt dat de overschrijdingskans 0,000 is. Deze is lager dan 0,05 wat betekent dat H₀ verworpen dient te worden. Dit houdt in dat de plant-temperatuursom niet normaal verdeeld is.
Tabel 3.6: Overzicht gemiddelde, laagste en hoogste temperatuursom in graaddagen per zettingsdatum.

<table>
<thead>
<tr>
<th>Zettingsdatum</th>
<th>Aantal vruchten</th>
<th>Gemiddelde temperatuursom</th>
<th>Laagste tempsom</th>
<th>Aantal vruchten</th>
<th>Hoogste tempsom</th>
<th>Aantal vruchten</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Feb</td>
<td>9</td>
<td>1035.4</td>
<td>939.9</td>
<td>2</td>
<td>1170.6</td>
<td>1</td>
</tr>
<tr>
<td>24-Feb</td>
<td>2</td>
<td>1069.9</td>
<td>1028.2</td>
<td>1</td>
<td>1111.6</td>
<td>1</td>
</tr>
<tr>
<td>28-Feb</td>
<td>19</td>
<td>1004.2</td>
<td>883.3</td>
<td>1</td>
<td>1094.3</td>
<td>1</td>
</tr>
<tr>
<td>4-Mar</td>
<td>37</td>
<td>1044.1</td>
<td>949.0</td>
<td>5</td>
<td>1166.5</td>
<td>1</td>
</tr>
<tr>
<td>7-Mar</td>
<td>40</td>
<td>1048.4</td>
<td>951.0</td>
<td>9</td>
<td>1522.8</td>
<td>1</td>
</tr>
<tr>
<td>10-Mar</td>
<td>44</td>
<td>1080.3</td>
<td>825.3</td>
<td>2</td>
<td>1284.2</td>
<td>6</td>
</tr>
<tr>
<td>14-Mar</td>
<td>33</td>
<td>1110.4</td>
<td>893.7</td>
<td>1</td>
<td>1377.5</td>
<td>5</td>
</tr>
<tr>
<td>17-Mar</td>
<td>27</td>
<td>1121.3</td>
<td>895.4</td>
<td>1</td>
<td>1313.6</td>
<td>3</td>
</tr>
<tr>
<td>21-Mar</td>
<td>27</td>
<td>1091.5</td>
<td>900.6</td>
<td>1</td>
<td>1364.0</td>
<td>3</td>
</tr>
<tr>
<td>24-Mar</td>
<td>5</td>
<td>1106.6</td>
<td>987.4</td>
<td>1</td>
<td>1164.1</td>
<td>3</td>
</tr>
<tr>
<td>29-Mar</td>
<td>6</td>
<td>1062.3</td>
<td>947.3</td>
<td>1</td>
<td>1193.7</td>
<td>1</td>
</tr>
</tbody>
</table>

Bij het bekijken van tabel 3.6 wordt duidelijk dat tussen de gemiddelde temperatuursom van vruchten van een bepaalde zettingsdatum, ongeveer 117 graden verschil kan zitten. Bij een gemiddelde etmaaltemperatuur van 21°C komt dit overeen met een verschil van ongeveer 6 dagen van de gemiddelde uitgroeiduur van een bepaalde zettingsdatum.

Daarnaast is uit tabel 3.6 op te maken dat het verschil van de laagste en hoogste temperatuursom per zettingsdatum, minimaal 42 tot maximaal 474 graden kan verschillen ten opzichte van de gemiddelde temperatuursom. Dit betekent dat bij een gemiddelde etmaaltemperatuur van 21°C, de uitgroeiduur minimaal 2 tot maximaal 23 dagen langer of korter kan zijn ten opzichte van de gemiddelde temperatuursom.
In figuur 3.5 t/m 3.8 is, voor zowel de ruimte- als de planttemperatuur, de relatie weergegeven tussen temperatuursom en zettings- en oogstdatum.

Figuur 3.5: Relatie tussen ruimte-temperatuursom en zettingsdatum.

De correlatie tussen de ruimte-temperatuursom en zettingsdatum is 0,24. De steekproefomvang is 249 en $R^2$ is 0,0586.

Figuur 3.6: Relatie tussen plant-temperatuursom en zettingsdatum.

De correlatie tussen de plant-temperatuursom en zettingsdatum is 0,28. De steekproefomvang is 249 en $R^2$ is 0,0769.
De correlatie tussen de ruimte-temperatuursom en oogstdatum is 0,68. De steekproefomvang is 249 en $R^2$ is 0,4595.

De correlatie tussen de plant-temperatuursom en oogstdatum is 0,70. De steekproefomvang is 249 en $R^2$ is 0,4959.

3.1.4 Discussie
Tijdens het onderzoek is naast de ruimte-temperatuursommen gekeken naar plant-temperatuursommen. Dit om te bepalen of deze een rol kunnen spelen bij het beter voorspellen van de oogst.
De werkelijke vruchttemperatuur kan afwijken van de ruimte- en planttemperatuur. Of dit een rol heeft gespeeld is in dit onderzoek niet onderzocht. Het meten van vruchttemperaturen was tijdens dit onderzoek nog niet mogelijk.

3.1.5 Conclusies
De spreiding in temperatuursommen van alle vruchten en de spreiding van de temperatuursom van een groep vruchten met eenzelfde uitgroeiduur, komt overeen met de resultaten uit het onderzoek naar spreiding in temperatuursom in 2004.

De plant-temperatuursom vertoont dezelfde spreiding als de ruimte-temperatuursom, alleen is deze 50 tot 60 graden lager. Dit betekent dat het gebruik van de planttemperatuursom geen verschil in resultaat oplevert in vergelijking met de ruimte-temperatuursom.

Verder blijkt dat de voorkomende ruimte- en plant-temperatuursommen niet normaal verdeeld zijn.

Uit de spreiding van de gemiddelde temperatuursom per zettingsdatum kan opgemaakt worden, dat voorspellen van de uitgroeiduur met behulp van deze gemiddelde temperatuursom een onnauwkeurigheid van 6 dagen op kan leveren. De laagste en hoogste temperatuursom op een bepaalde zettingsdatum kan hierbij nog zorgen voor een extra onnauwkeurigheid van 2 tot 23 dagen.

Het voorspellen van de uitgroeiduur op basis van een gemiddelde temperatuursom lijkt niet mogelijk vanwege een te grote onnauwkeurigheid. Deze onnauwkeurigheid loopt al snel op tot 15 dagen te vroeg of te laat voorspellen.

3.1.6 Aanbevelingen
Gezien de grote spreiding in temperatuursommen voor zowel ruimte- als planttemperatuur en de te grote onnauwkeurigheid, wordt aanbevolen de gemiddelde temperatuursom niet te gebruiken voor het voorspellen van de uitgroeiduur.

3.2 Lichtsom

3.2.1 Inleiding
Het doel van dit onderdeel is om aan de hand van de dataset uit 2005, te onderzoeken of er een relatie is tussen lichtsom en uitgroeiduur. Indien er een relatie is, wordt bekeken of deze mogelijk te gebruiken is als voorspeller voor de oogst. Bij het bepalen van de lichtsom voor de uitgroeiduur, wordt gemeten van fase 2 (vrucht 1 cm doorsnede) tot oogstbaar.

3.2.2 Materiaal en methode
Van in totaal 249 vruchten van het tweede zetsel is de lichtsom bepaald. Hiervoor is het licht gemeten met een lichmeter op het dek van de kas. Vervolgens is de gemiddelde lichtsom over de dagen van de vruchtuitgroei gesommeerd per vrucht.

Van de geanalyseerde vruchten wordt eerst de uitgroeiduur bepaald, vervolgens wordt van de grootste groep vruchten met dezelfde uitgroeiduur gekeken naar de (spreiding in de) lichtsom. Vervolgens wordt de spreiding van de lichtsom van alle vruchten weergegeven. Hierbij wordt bekeken of de waarnemingen normaal verdeeld zijn. Daarnaast wordt de
gemiddelde lichtsom per zettingsdatum berekend, inclusief de maximale en minimale waarden. Tenslotte wordt gekeken naar de correlatie tussen lichtsom en zettings- plus oogstdatum.

3.2.3 Resultaten
Voor een overzicht van de uitgroeiduren van de onderzochte vruchten wordt verwezen naar tabel 3.1.

Tabel 3.7: Spreiding in lichtsom van de vruchten die in 49 dagen uitgroeien.

<table>
<thead>
<tr>
<th>Lichtsom in joulesdagen</th>
<th>Aantal vruchten in stuks</th>
</tr>
</thead>
<tbody>
<tr>
<td>44173</td>
<td>4</td>
</tr>
<tr>
<td>47357</td>
<td>12</td>
</tr>
<tr>
<td>47589</td>
<td>1</td>
</tr>
<tr>
<td>53767</td>
<td>19</td>
</tr>
<tr>
<td>56805</td>
<td>21</td>
</tr>
<tr>
<td>60124</td>
<td>1</td>
</tr>
<tr>
<td>60370</td>
<td>8</td>
</tr>
<tr>
<td>64125</td>
<td>17</td>
</tr>
<tr>
<td>66088</td>
<td>1</td>
</tr>
<tr>
<td>73362</td>
<td>3</td>
</tr>
<tr>
<td>77708</td>
<td>4</td>
</tr>
</tbody>
</table>

Het gewogen gemiddelde van de in tabel 3.7 geanalyseerde vruchten bedraagt 57552,3 joulesdagen terwijl het gewogen gemiddelde over alle vruchten 58793 joulesdagen bedraagt.

In tabel 3.8 op pagina 30 is de volledige spreiding in lichtsommen van de onderzochte vruchten weergegeven.
### Tabel 3.8: Spreiding in lichtsom van alle geanalyseerde vruchten.

<table>
<thead>
<tr>
<th>Lichtsom in joulesdagen</th>
<th>Aantal vruchten in stuks</th>
</tr>
</thead>
<tbody>
<tr>
<td>39378</td>
<td>2</td>
</tr>
<tr>
<td>39954</td>
<td>1</td>
</tr>
<tr>
<td>40745</td>
<td>2</td>
</tr>
<tr>
<td>40861</td>
<td>1</td>
</tr>
<tr>
<td>44173</td>
<td>4</td>
</tr>
<tr>
<td>44632</td>
<td>9</td>
</tr>
<tr>
<td>44748</td>
<td>5</td>
</tr>
<tr>
<td>45014</td>
<td>5</td>
</tr>
<tr>
<td>45656</td>
<td>3</td>
</tr>
<tr>
<td>47261</td>
<td>15</td>
</tr>
<tr>
<td>47357</td>
<td>12</td>
</tr>
<tr>
<td>47589</td>
<td>1</td>
</tr>
<tr>
<td>48967</td>
<td>1</td>
</tr>
<tr>
<td>49604</td>
<td>1</td>
</tr>
<tr>
<td>49837</td>
<td>1</td>
</tr>
<tr>
<td>50198</td>
<td>1</td>
</tr>
<tr>
<td>51576</td>
<td>1</td>
</tr>
<tr>
<td>51602</td>
<td>1</td>
</tr>
<tr>
<td>52127</td>
<td>4</td>
</tr>
<tr>
<td>53767</td>
<td>20</td>
</tr>
<tr>
<td>53909</td>
<td>1</td>
</tr>
<tr>
<td>54515</td>
<td>10</td>
</tr>
<tr>
<td>56396</td>
<td>14</td>
</tr>
<tr>
<td>56576</td>
<td>1</td>
</tr>
<tr>
<td>56805</td>
<td>21</td>
</tr>
<tr>
<td>57457</td>
<td>5</td>
</tr>
<tr>
<td>58445</td>
<td>7</td>
</tr>
<tr>
<td>59993</td>
<td>1</td>
</tr>
<tr>
<td>60124</td>
<td>1</td>
</tr>
<tr>
<td>60370</td>
<td>8</td>
</tr>
<tr>
<td>61074</td>
<td>1</td>
</tr>
<tr>
<td>62404</td>
<td>1</td>
</tr>
<tr>
<td>62660</td>
<td>9</td>
</tr>
<tr>
<td>64125</td>
<td>17</td>
</tr>
<tr>
<td>64300</td>
<td>1</td>
</tr>
<tr>
<td>65327</td>
<td>1</td>
</tr>
<tr>
<td>66088</td>
<td>1</td>
</tr>
<tr>
<td>67673</td>
<td>15</td>
</tr>
<tr>
<td>70220</td>
<td>3</td>
</tr>
<tr>
<td>70586</td>
<td>8</td>
</tr>
<tr>
<td>72876</td>
<td>4</td>
</tr>
<tr>
<td>73362</td>
<td>3</td>
</tr>
<tr>
<td>73700</td>
<td>1</td>
</tr>
<tr>
<td>73768</td>
<td>2</td>
</tr>
<tr>
<td>76681</td>
<td>1</td>
</tr>
<tr>
<td>77046</td>
<td>3</td>
</tr>
<tr>
<td>77708</td>
<td>3</td>
</tr>
<tr>
<td>81178</td>
<td>1</td>
</tr>
<tr>
<td>84726</td>
<td>3</td>
</tr>
<tr>
<td>85680</td>
<td>1</td>
</tr>
<tr>
<td>87639</td>
<td>5</td>
</tr>
<tr>
<td>91569</td>
<td>1</td>
</tr>
<tr>
<td>93496</td>
<td>3</td>
</tr>
</tbody>
</table>
Uit tabel 3.8 op pagina 30 is het volgende op te maken: de lichtsom varieert van 39378 tot 93496 joulesdagen (een verschil van 49 dagen van 1111 joules/cm²) en met weglating van de extreme waarden van 47261 tot 67673 joulesdagen (een verschil van 18 dagen van 1111 joules/cm²).

Figuur 3.9: Spreiding in lichtsom

Wanneer figuur 3.9 bekeken wordt, lijkt de lichtsom niet normaal verdeeld. Met behulp van SPSS is getoetst of dit klopt. In figuur 3.10 is de output van deze analyse gegeven.

Figuur 3.10: Output toets normale verdeling van lichtsom.

Uit de output in figuur 3.10 blijkt dat de overschrijdingskans 0,001 is. Deze is lager dan 0,05 wat betekent dat H₀ verworpen dient te worden. Dit houdt in dat de lichtsom niet normaal verdeeld is.
Tabel 3.9 Overzicht gemiddelde, laagste en hoogste lichtsom in jouledagen per zettingsdatum.

| Zettingsdatum | Aantal vruchten | Gemiddelde lichtsom | Laagste lichtsom | Aantal vruchten | Hoogste lichtsom | Aantal vruchten |
|---------------|-----------------|---------------------|------------------|-----------------|------------------|-----------------
| 21-Feb        | 9               | 45688.8             | 39378            | 2               | 51576            | 1               |
| 24-Feb        | 2               | 48893.5             | 47589            | 1               | 50198            | 1               |
| 28-Feb        | 19              | 45910.3             | 39954            | 1               | 49604            | 1               |
| 4-Mar         | 37              | 51227.5             | 40861            | 1               | 70220            | 1               |
| 7-Mar         | 40              | 54039.2             | 44632            | 8               | 91569            | 1               |
| 10-Mar        | 42              | 59474.6             | 40745            | 2               | 77708            | 1               |
| 14-Mar        | 33              | 65730.2             | 44632            | 1               | 87639            | 5               |
| 17-Mar        | 27              | 67668.5             | 51602            | 1               | 84726            | 3               |
| 21-Mar        | 27              | 66809.4             | 53767            | 1               | 93496            | 3               |
| 24-Mar        | 5               | 71443.8             | 59993            | 1               | 77046            | 3               |
| 29-Mar        | 6               | 71423.3             | 60370            | 1               | 85680            | 1               |

Bij het bekijken van tabel 3.9 wordt duidelijk dat tussen de gemiddelde lichtsom van vruchten van een bepaalde zettingsdatum, ongeveer 25755 joules verschil kan zitten. Bij een gemiddelde dagsom van 1111 joules/cm² komt dit overeen met een verschil van ongeveer 23 dagen van de gemiddelde uitgroeiduur van een bepaalde zettingsdatum.

Daarnaast is uit tabel 3.9 op te maken dat het verschil van de laagste en hoogste lichtsom per zettingsdatum, minimaal 1305 tot maximaal 37530 joules kan verschillen ten opzichte van de gemiddelde lichtsom. Dit betekent dat bij een gemiddelde dagsom van 1111 joules/cm², de uitgroeiduur minimaal 1 tot maximaal 34 dagen langer of korter kan zijn ten opzichte van de gemiddelde lichtsom.

In figuur 3.11 en 3.12 is de relatie weergegeven tussen lichtsom en zettings- en oogstdatum.

Figuur 3.11: Relatie tussen lichtsom en zettingsdatum.

De correlatie tussen de lichtsom en zettingsdatum is 0,65.
De steekproefomvang is 247 en R² is 0,4241.
De correlatie tussen de lichtsom en oogstdatum is 0,90. De steekproefomvang is 247 en $R^2$ is 0,8011.

3.2.4 Conclusies

De spreiding in lichtsommen van alle vruchten en de spreading van de lichtsom van een groep vruchten met eenzelfde uitgroeiduur, komt overeen met de spreiding zoals deze is gevonden bij temperatuursom. De spreiding in lichtsommen is in vergelijking tot de spreiding in temperatuursommen zelfs nog onregelmatiger.

Verder blijkt dat de voorkomende lichtsommen niet normaal verdeeld zijn.

In de loop van de tijd neemt de lichtsom per dag toe. Dit is te verklaren aan de hand van het langer worden van de dagen en het toenemen van de lichtintensiteit. Bij een min of meer gelijkblijvende uitgroeiduur neemt de lichtsom toe.

Het voorspellen van de uitgroeiduur op basis van een gemiddelde lichtsom lijkt zodoende onmogelijk vanwege een te grote onnauwkeurigheid.

3.2.5 Aanbevelingen

Gezien de grote spreiding in lichtsommen en de te grote onnauwkeurigheid, wordt aanbevolen de gemiddelde lichtsom niet te gebruiken voor het voorspellen van de uitgroeiduur.
4 Hardgroenbepaling

In dit hoofdstuk wordt de proef hardgroenbepaling beschreven. Deze proef is een vervolg op de proef die beschreven staat in het rapport van Den Besten en Elshout uit 2005.

4.1 Inleiding

Uit het vorige onderzoek van Den Besten en Elshout uit 2005 is een aantal aanbevelingen gedaan voor vervolgonderzoek aan hardgroenbepaling. Doel van dit hoofdstuk is om het vervolgonderzoek te beschrijven en de volgende vragen te beantwoorden:

- Is het mogelijk om hardgroen nauwkeurig te bepalen aan de hand van herkenbare ‘afspraken’ over het stadium hardgroen?
- Is het mogelijk om op basis van hardgroene vruchten de oogst (stuks, kilo’s en sortering) te voorspellen?

Voor het beantwoorden van de laatste vraag zijn de volgende twee deelvragen opgesteld:

- Hoe lang duurt het traject van hardgroen tot oogst en is dit bij elke vrucht gelijk?
- Is er een diameterverandering vanaf het moment hardgroen tot aan de oogst en hoe groot is deze verandering?

4.2 Materiaal en methode

Om de vragen uit het vervolgonderzoek te beantwoorden is de plantobservatie zoals beschreven in het rapport van Jansen en Zondag (2004) uitgebreid. Deze uitbreiding bestond uit het bepalen van hardgroene vruchten aan de hand van twee kenmerken. Van vruchten die hardgroen bevonden werden is de ‘hardgroendatum’ in de dataset genoteerd. Vruchten worden hardgroen geregistreerd wanneer ze aan de volgende twee kenmerken voldoen:

- De vruchten voelen stevig aan;
- De vruchten hebben een goede glans.

Een hardgroene paprika kan omschreven worden als een oogstbare groene paprika.

Aangezien in de plantobservatie op elke registratiedag de diameter van de vruchten wordt bepaald is de diameter van hardgroene vruchten bekend.

Voor de analyse van de hardgroenbepaling zijn alle vruchten uit het eerste en het tweede zetsel gebruikt, waarvan de ‘hardgroendatum’ en de diameter op deze datum bekend waren. Het gaat hierbij om 241 vruchten uit het eerste zetsel en 239 uit het tweede zetsel. Het totaal aantal vruchten is 480.

Van deze vruchten is de ‘doorkleurduur’ (duur vanaf het moment hardgroen tot aan het moment van oogst) bepaald. Vervolgens is bekeken of er een relatie is tussen de ‘hardgroendatum’ en de doorkleurduur. Daarnaast is van elke vrucht de diameterverandering berekend tussen het moment van hardgroen en het moment van oogst.
4.3 Resultaten

4.3.1 Doorkleurduur

In figuur 4.1 wordt de spreiding van de doorkleurduren van alle vruchten weergegeven met daarbij de frequentie van de betreffende doorkleurduur. In bijlage 1 staan de gegevens uit figuur 4.1 weergegeven in een frequentietabel.

![Histogram](image)

Figuur 4.1: Frequentie van de voorkomende doorkleurduren.

Uit figuur 4.1 blijkt dat de doorkleurduur kan variëren van 7 tot 35 dagen. Het grootste deel van de vruchten heeft een doorkleurduur van 17 tot 28 dagen. Het gewogen gemiddelde van alle vruchten is 21,9 dagen. De doorkleurduur lijkt normaal verdeeld en aan de hand van SPSS is dit getoetst. In figuur 4.2 is de output van deze analyse gegeven.

![SPSS Output](image)

\( H_0 = \) De doorkleurduur is normaal verdeeld  
\( H_1 = \) De doorkleurduur is niet normaal verdeeld

**One-Sample Kolmogorov-Smirnov Test**

<table>
<thead>
<tr>
<th>duur hardgroen tot oogst</th>
<th>480</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Normal Parameters</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>21,86</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>4,483</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>0,133</td>
</tr>
<tr>
<td>Positive</td>
<td>0,133</td>
</tr>
<tr>
<td>Negative</td>
<td>-0,107</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>2,908</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0,000</td>
</tr>
</tbody>
</table>

a Test distribution is Normal.  
b Calculated from data.

Figuur 4.2: Output toets normale verdeling van doorkleurduur.
Uit de output in figuur 4.2 blijkt dat de overschrijdingskans 0,000 is. Deze is lager dan 0,05 wat betekent dat $H_0$ verworpen dient te worden. Dit houdt in dat de doorkleurduur niet normaal verdeeld is.

In figuur 4.3 is de frequentie van doorkleurduren per zetsel weergegeven. De gemiddelde doorkleurduur van de vruchten uit het eerste zetsel is 22,3 dagen. Van de vruchten uit het tweede zetsel bedraagt de gemiddelde doorkleurduur 21,5 dagen.

Figuur 4.3: Frequentie van doorkleurduren per zetsel.

Uit figuur 4.3 blijkt dat bij beide zetsels de meeste vruchten een doorkleurduur hebben van 21 dagen. Bij het eerste zetsel doen er meer vruchten langer dan 21 dagen over in vergelijking met de vruchten uit het tweede zetsel. Uit de gemiddelde uitgroeiduur van beide zetsels blijkt dat de gemiddelde doorkleurduur van het tweede zetsel iets korter is.
4.3.2 Diameterverandering traject hardgroen tot oogst

In tabel 4.1 is in een frequentietabel weergegeven hoe de spreiding is van de voorkomende diametertoenames.

<table>
<thead>
<tr>
<th>diameter toename</th>
<th>Frequentie</th>
<th>Percentage</th>
<th>Cumulatief percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>1</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>0,4</td>
<td>0,6</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>2,1</td>
<td>2,7</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>4,6</td>
<td>7,3</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>9,8</td>
<td>17,1</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>10,2</td>
<td>27,3</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>10,4</td>
<td>37,7</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>11,3</td>
<td>49,0</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>11,7</td>
<td>60,6</td>
</tr>
<tr>
<td>7</td>
<td>46</td>
<td>9,6</td>
<td>70,2</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>7,3</td>
<td>77,5</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>6,3</td>
<td>83,8</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>4,2</td>
<td>87,9</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>4,6</td>
<td>92,5</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>3,3</td>
<td>95,8</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>1,3</td>
<td>97,1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>0,8</td>
<td>97,9</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>0,4</td>
<td>98,3</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>1,0</td>
<td>99,4</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0,2</td>
<td>99,6</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0,2</td>
<td>99,8</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0,2</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Uit tabel 4.1 is op te maken dat de diametertoename kan variëren van -2 mm tot 23 mm. Bij de meeste vruchten (60%) neemt de diameter 2 tot 8 mm toe. 5% van de vruchten heeft een diametertoename van meer dan 12 mm.

Ervan uitgaande dat diameterveranderingen van -2 tot 2 mm zijn te wijten aan onnauwkeurigheden tijdens het meten, blijk uit tabel 4.1 dat 17 % van de vruchten niet meer in diameter toeneemt na het moment hardgroen. De overige 83 % nemen wel in diameter toe, wat als gevolg kan hebben dat deze in een andere sorteringklasse terechtkomen. Overigens is het mogelijk dat de vruchten die meer dan 12 mm toenemen in diameter, te vroeg hardgroen beoordeeld zijn.

In figuur 4.5 is de frequentie van de diametertoename per zetsel weergegeven. De gemiddelde diametertoename van de vruchten uit het eerste zetsel is 4,3 millimeter. Bij de vruchten uit het tweede zetsel is de gemiddelde diametertoename 7,7 millimeter.
Figuur 4.5: Frequentie van de verschillende diametertoenames per zetsel.

Met behulp van een verschiltoets is geanalyseerd of de gemiddelde diametertoename per zetsel significant van elkaar verschilt. De output van deze analyse is te vinden in figuur 4.6. Uit de output van figuur 4.6 blijkt dat de overschrijdingkans 0,000 is. Deze is lager dan 0,05 dus $H_0$ dient verworpen te worden. Dit betekent dat er een significant verschil is tussen de diametertoename van verschillende zetsels. In dit geval nemen de vruchten uit het eerste zetsel significant minder toe in diameter dan de vruchten uit het tweede zetsel.

$H_0 = Er$ is geen verschil tussen de diametertoename van verschillende zetsels
$H_1 = Er$ is een verschil tussen de diametertoename van verschillende zetsels

**ANOVA**

<table>
<thead>
<tr>
<th>diametertoename</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>1400,858</td>
<td>1</td>
<td>1400,858</td>
<td>135,572</td>
<td>0,000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>4939,142</td>
<td>478</td>
<td>10,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6340,000</td>
<td>479</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figuur 4.6: Output verschiltoets diametertoename van verschillende zetsels.

Tot slot is bekeken in hoeverre de diameterverandering invloed heeft op het voorspellen van de sorteringklasse. In figuur 4.7 is in een diagram de opbouw van de verschillende sorteringklassen weergegeven gebaseerd op de diameter bij het moment van hardgroen en de diameter bij oogst.
Figuur 4.7: Opbouw van de sorteringklassen bij het moment hardgroen en bij de oogst.

In deze figuur is duidelijk te zien dat de opbouw van de verschillende klassen verschilt. Dit betekent dat een aantal vruchten op het moment van hardgroen nog niet in de sorteringklasse zitten waar ze op het moment van oogst in terecht komen.

In tabel 4.2 is weergegeven hoeveel procent van de vruchten uit een sorteringklasse in een andere sorteringklasse terechtkomen. Uit deze tabel blijkt dat meer dan de helft van het totaal aantal vruchten (56,5%) in een andere sorteringklasse terechtkomt.

Alleen vruchten uit de eerste vier sorteringklassen veranderen van sorteringklasse. Dit is logisch, aangezien de vruchten uit de hoogste sorteringklasse niet in een hogere klasse terecht kunnen komen.

Tabel 4.2: Overzicht verandering van sorteringklassen in procenten per sorteringklasse

<table>
<thead>
<tr>
<th>Sorteringklasse bij hardgroen</th>
<th>Verandering sorteringklasse bij oogst (%)</th>
<th>Nee</th>
<th>Ja</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-62,5 mm</td>
<td>21</td>
<td>42,9</td>
<td>57,1</td>
</tr>
<tr>
<td>+ 62,5 mm</td>
<td>122</td>
<td>48,4</td>
<td>51,6</td>
</tr>
<tr>
<td>+ 73 mm</td>
<td>231</td>
<td>31,6</td>
<td>68,4</td>
</tr>
<tr>
<td>+ 82 mm</td>
<td>102</td>
<td>62,7</td>
<td>37,3</td>
</tr>
<tr>
<td>+ 93 mm</td>
<td>4</td>
<td>100,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Totaal</td>
<td>480</td>
<td>43,5</td>
<td>56,5</td>
</tr>
</tbody>
</table>

Als laatste is bekeken in welke sortering de vruchten die veranderen van sorteringklasse terechtkomen. Dit overzicht is opgenomen in tabel 4.3. Uit het overzicht blijkt dat vruchten over het algemeen één sorteringklasse hoger uitkomen. Er is een klein percentage dat zelfs twee sorteringklassen hoger terechtkomt op het moment van oogst. Eén vrucht komt een
4.4 Discussie

Hardgroenbepaling bleek nog niet zo eenvoudig. Er waren harde vruchten die nog geen glans bezaten en omgekeerd. Dit sluit aan bij de ervaringen van telers, die het zelf nog steeds lastig vinden om hardgroen te bepalen. Tijdens de plantobservatie en door ervaringen van telers ontstonden de volgende twee vragen:

- Worden grove vruchten gelijktijdig, eerder of later hardgroen beoordeeld dan fijne vruchten?
- Neemt de diameter van grove vruchten harder toe dan die van fijne vruchten?

Aan de hand van deze waarnemingen is besloten om te analyseren of deze waarnemingen statistisch onderbouwd kunnen worden. Deze analyse wordt beschreven in 4.4.1.

Aangezien hardgroen lastig te bepalen is, is het mogelijk dat meer dan 17 % van de vruchten niet meer in diameter toeneemt. Bij bepaalde vruchten kan het moment hardgroen te vroeg bepaald zijn. Dit zal niet voor 100 % van het aantal vruchten gelden, waardoor het idee dat vruchten na het moment hardgroen nog in diameter toenemen waar lijkt te zijn.

Duidelijk is dat veel vruchten uiteindelijk in een andere sorteringklasse terechtkomen als dat op het moment van hardgroen verwacht zou worden. Dit heeft te maken met de diameterverandering. Wanneer deze na het moment hardgroen nog toeneemt is de kans dat de sorteringklasse verandert groot.

Doordat de diameter van hardgroene vruchten toeneemt kan deze niet gebruikt worden in de formule voor gewichtsvoorspelling (zie paragraaf 2.2). Wanneer met de diameter van het moment hardgroen het gewicht berekend/geschat wordt, dan vindt in veel gevallen een onderschatting plaats.

4.4.1 Verschil in doorkleurduur tussen fijne, normale en grove vruchten

Voor het beantwoorden van de vraag of er een verschil is tussen de doorkleurduur van fijne, normale en grove vruchten, zijn de vruchten opgedeeld in de volgende drie categorieën:

- Fijne vruchten: 0 tot 72 mm;
- Normale vruchten: 73 mm tot 82 mm;
- Grove vruchten: + 82 mm.

In de drie categorieën zaten respectievelijk 78, 134 en 266 vruchten.
De gemiddelde doorkleurduur voor fijne, normale en grove vruchten bedraagt respectievelijk 24,7 dagen, 20,3 dagen en 21,9 dagen. Door middel van een verschiltoets is onderzocht of er significante verschillen zijn tussen de drie categorieën vruchten. De output van deze analyse is weergegeven in figuur 4.8.

Uit de output in figuur 4.8 is op te maken dat de doorkleurduur van fijne vruchten significant verschilt met die van normale en grove vruchten. De doorkleurduur van fijne vruchten is langer dan die van grove en normale vruchten. De doorkleurduur van normale vruchten verschilt met die van grove vruchten. De doorkleurduur van normale vruchten is significant korter dan de die van grove vruchten.

\[ H_0 = \text{Er is geen verschil tussen de doorkleurduur tussen fijne, normale en grove vruchten} \]
\[ H_1 = \text{Er is een verschil tussen de doorkleurduur tussen fijne, normale en grove vruchten} \]

<table>
<thead>
<tr>
<th>Multiple Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable: duur hardgroen tot oogst</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fijn</td>
<td>4.35*</td>
<td>0.606</td>
<td>0.000</td>
<td>3.16 - 5.55</td>
</tr>
<tr>
<td>middel</td>
<td>2.88*</td>
<td>0.549</td>
<td>0.000</td>
<td>1.80 - 3.96</td>
</tr>
<tr>
<td>grof</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fijn</td>
<td>-4.35*</td>
<td>0.606</td>
<td>0.000</td>
<td>-5.55 - -3.16</td>
</tr>
<tr>
<td>middel</td>
<td>-1.48*</td>
<td>0.450</td>
<td>0.001</td>
<td>-2.36 - -0.59</td>
</tr>
<tr>
<td>grof</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fijn</td>
<td>-2.88*</td>
<td>0.549</td>
<td>0.000</td>
<td>-3.96 - -1.80</td>
</tr>
<tr>
<td>middel</td>
<td>1.48*</td>
<td>0.450</td>
<td>0.001</td>
<td>0.59 - 2.36</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the .05 level.

Figuur 4.8: Output meervoudige verschiltoets voor doorkleurduur bij fijne, normale en grove vruchten.

4.4.2 Verschil in diametertoename van fijn, normale en grove vruchten

Voor het beantwoorden van de vraag of er verschillen zijn tussen de diametertoename van fijne, normale en grove vruchten zijn dezelfde categorieën gebruikt als in de vorige paragraaf. Het aantal vruchten per categorie is hetzelfde.

De gemiddelde diametertoename van fijne, normale en grove vruchten bedraagt respectievelijk 3,1 millimeter, 4,3 millimeter en 7,7 millimeter. Via een verschiltoets is onderzocht of de drie categorieën vruchten significant van elkaar verschillen. De output van deze toets is weergegeven in figuur 4.9.
**H₀** = Er is geen verschil tussen de diametertoename van fijne, normale en grove vruchten  
**H₁** = Er is een verschil tussen de diametertoename van fijne, normale en grove vruchten

---

### Multiple Comparisons

Dependent Variable: DIATOENA

<table>
<thead>
<tr>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval Lower Bound</th>
<th>95% Confidence Interval Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>fijn</td>
<td>middel</td>
<td>-1,15*</td>
<td>0,435</td>
<td>0,009</td>
</tr>
<tr>
<td>fijn</td>
<td>grof</td>
<td>-4,62*</td>
<td>0,395</td>
<td>0,000</td>
</tr>
<tr>
<td>middel</td>
<td>fijn</td>
<td>1,15*</td>
<td>0,435</td>
<td>0,009</td>
</tr>
<tr>
<td>middel</td>
<td>grof</td>
<td>-3,47*</td>
<td>0,323</td>
<td>0,000</td>
</tr>
<tr>
<td>grof</td>
<td>fijn</td>
<td>4,62*</td>
<td>0,395</td>
<td>0,000</td>
</tr>
<tr>
<td>grof</td>
<td>middel</td>
<td>3,47*</td>
<td>0,323</td>
<td>0,000</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the .05 level.

---

Figuur 4.9: Output meervoudige verschiltoets voor diametertoename bij fijne, normale en grove vruchten.

Uit de output in figuur 4.9 valt op te maken dat de diametertoename tussen alle drie de categorieën significant verschilt. Anders gezegd betekent dit dat fijne vruchten significant minder in diameter toenemen dan normale en grove vruchten. Normale vruchten nemen significant minder toe dan grove vruchten.

### 4.5 Conclusies

Uit de verschillen tussen doorkleurduur en diametertoename bij fijne, normale en grove vruchten blijkt dat vruchten op het moment hardgroen niet allemaal in hetzelfde stadium zitten.

De doorkleurduur van vruchten kan enorm verschillen, van 7 tot wel 35 dagen. De doorkleurduur van vruchten is niet constant en niet normaal verdeeld, waardoor de doorkleurduur niet te gebruiken is om het oogstmoment te voorspellen. Daarbij kunnen zetsels wat betreft doorkleurduur significant van elkaar verschillen.

Een groot percentage van de vruchten neemt na het moment hardgroen nog in diameter toe. Normaal ligt deze diametertoename tussen de 0 en 10 millimeter. Uitschieters boven de 10 millimeter zijn te wijten aan vruchten die te vroeg hardgroen bepaald zijn. Wel is zeker vast te stellen dat vruchten op het moment hardgroen niet dezelfde diameter hebben als bij de oogst. Daarnaast bestaan er significante verschillen in de diametertoename van vruchten tussen verschillende zetsels.
Aangezien de diameter de basis is voor de gewichtsvoorspelling en de diameter nog toeneemt na het moment hardgroen, kan het vruchtgewicht niet voorspeld worden op het moment hardgroen. Het vruchtgewicht van veel vruchten zal hierdoor onderschat worden. Gewichtsvoorspelling kan alleen plaatsvinden wanneer de diameter niet meer toeneemt.

De diameter bepaalt verder de sorteringklasse. Uit de resultaten blijkt dat meer dan 55 % van de vruchten van sorteringklasse verandert. Dit betekent dat het voorspellen van sorteringklasse niet mogelijk is op basis van de diameter op het moment hardgroen.

4.6 Aanbevelingen

Aanbevolen wordt om het moment hardgroen niet als indicator te gebruiken voor het bepalen van de uitgroeiduur van de vruchten. Daarnaast wordt aangeraden de diameter van een vrucht op het moment van hardgroen niet te gebruiken voor het voorspellen van de sorteringklasse en het vruchtgewicht.

Hardgroen kan wel gebruikt worden als startmoment van de diametermeting. Hierdoor wordt de vrucht minder aangeraakt en daardoor minder beschadigd.
5 Oogstvoorspeller paprika

In dit hoofdstuk wordt de gebruikelijke oogstvoorspeller voor paprika beschreven. Daarnaast worden de resultaten van oogstvoorspelling weergegeven.

5.1 Stuksvoorspelling

5.1.1 Inleiding


De vier voorspellers zijn wekelijks één of twee maal ingevoerd met de benodigde gegevens uit de plantobservatie. Vervolgens is de gerealiseerde productie vergeleken met de voorspelde productie met als doel de nauwkeurigheid van de modellen te bepalen. Daarnaast kan bepaald worden welk model de oogst het nauwkeurigst voorspelt. Doel is om één model (met eventuele aanpassingen) aan te bevelen voor de oogstvoorspelling in paprika.

5.1.2 Materiaal en methode

Voor het voorspellen van de oogst zijn vier voorspellers gebruikt die A t/m D genoemd worden. Het principe van de vier modellen is hetzelfde, er worden zettingcijfers en abortiecijfers ingevoerd en op basis van de uitgroeiduurpercentages per week (uit het rapport van Den Besten en Elshout uit 2005) wordt de stuksproductie op een (theoretische) oogstdatum bepaald. Aan de hand van een oogstschema wordt de productie op de werkelijke oogstdatum bepaald door de dagelijkse ‘theoretische’ productie te sommeren. Een handleiding voor het gebruik van de modellen is opgenomen in bijlage 2.

De verschillen in de modellen A tot en met D bestaan uit het wekelijks of tweewekelijks invoeren van de cijfers en het onderscheid dat, al dan niet, gemaakt wordt tussen hoofd- en zijstengels met betrekking tot de uitgroeipercentages. Voor een overzicht van de verschillen tussen de modellen A tot en met D wordt verwezen naar tabel 5.1

<table>
<thead>
<tr>
<th>Tabel 5.1: Overzicht verschillen van de modellen A t/m D.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model A</strong></td>
</tr>
<tr>
<td><strong>Model B</strong></td>
</tr>
<tr>
<td><strong>Model C</strong></td>
</tr>
<tr>
<td><strong>Model D</strong></td>
</tr>
</tbody>
</table>

Met behulp van de modellen zijn wekelijks voorspellingen gemaakt voor de stuksproductie. Vervolgens zijn de voorspellingen aangepast aan de oogstfrequentie en is de gerealiseerde productie per oogstonde vergeleken met de voorspelde productie van elk model.
5.1.3 Resultaten

In tabel 5.2 zijn de voorspellingen per oogstdatum, gemaakt met de vier modellen, weergegeven. Vervolgens zijn de voorspellingen vergeleken met de gerealiseerde oogst van de betreffende oogstdatum. De kleinste afwijking is per oogstdatum geel gearceerd. Grijs gearceerd betekent onbetrouwbaar door het ontbreken van zettingcijfers, en wordt in verdere analyses niet meegenomen.

<table>
<thead>
<tr>
<th>Oogstdatum</th>
<th>Gerealiseerd Stuks/m²</th>
<th>Voorspelling Model A Stuks/m²</th>
<th>Afwijking Model A Stuks/m²</th>
<th>Voorspelling Model B Stuks/m²</th>
<th>Afwijking Model B Stuks/m²</th>
<th>Voorspelling Model C Stuks/m²</th>
<th>Afwijking Model C Stuks/m²</th>
<th>Voorspelling Model D Stuks/m²</th>
<th>Afwijking Model D Stuks/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-apr-05</td>
<td>3,88</td>
<td>0,50</td>
<td>3,38</td>
<td>0,45</td>
<td>3,43</td>
<td>0,52</td>
<td>3,36</td>
<td>0,47</td>
<td>3,41</td>
</tr>
<tr>
<td>7-apr-05</td>
<td>5,61</td>
<td>0,73</td>
<td>4,88</td>
<td>0,81</td>
<td>4,80</td>
<td>0,72</td>
<td>4,89</td>
<td>0,81</td>
<td>4,80</td>
</tr>
<tr>
<td>14-apr-05</td>
<td>5,27</td>
<td>1,62</td>
<td>3,65</td>
<td>1,71</td>
<td>3,56</td>
<td>1,65</td>
<td>3,62</td>
<td>1,73</td>
<td>3,54</td>
</tr>
<tr>
<td>20-apr-05</td>
<td>2,63</td>
<td>2,94</td>
<td>-0,31</td>
<td>3,09</td>
<td>-0,46</td>
<td>2,96</td>
<td>-0,33</td>
<td>3,11</td>
<td>-0,48</td>
</tr>
<tr>
<td>25-apr-05</td>
<td>2,79</td>
<td>2,77</td>
<td>0,02</td>
<td>2,82</td>
<td>-0,03</td>
<td>2,77</td>
<td>0,02</td>
<td>2,73</td>
<td>0,06</td>
</tr>
<tr>
<td>28-apr-05</td>
<td>2,56</td>
<td>1,95</td>
<td>0,61</td>
<td>1,73</td>
<td>0,83</td>
<td>1,92</td>
<td>0,64</td>
<td>1,66</td>
<td>0,90</td>
</tr>
<tr>
<td>3-mei-05</td>
<td>4,15</td>
<td>2,06</td>
<td>2,09</td>
<td>1,97</td>
<td>2,18</td>
<td>2,05</td>
<td>2,10</td>
<td>1,94</td>
<td>2,21</td>
</tr>
<tr>
<td>12-mei-05</td>
<td>3,56</td>
<td>2,29</td>
<td>1,27</td>
<td>2,18</td>
<td>1,38</td>
<td>2,19</td>
<td>1,37</td>
<td>2,31</td>
<td>1,25</td>
</tr>
<tr>
<td>18-mei-05</td>
<td>1,48</td>
<td>2,19</td>
<td>-0,71</td>
<td>2,38</td>
<td>-0,90</td>
<td>2,09</td>
<td>-0,61</td>
<td>2,40</td>
<td>-0,92</td>
</tr>
<tr>
<td>24-mei-05</td>
<td>3,05</td>
<td>3,26</td>
<td>-0,21</td>
<td>3,58</td>
<td>-0,53</td>
<td>3,24</td>
<td>-0,19</td>
<td>3,52</td>
<td>-0,47</td>
</tr>
<tr>
<td>27-mei-05</td>
<td>1,93</td>
<td>2,29</td>
<td>-0,36</td>
<td>1,79</td>
<td>0,14</td>
<td>2,27</td>
<td>-0,34</td>
<td>1,77</td>
<td>0,16</td>
</tr>
<tr>
<td>30-mei-05</td>
<td>2,19</td>
<td>1,42</td>
<td>0,77</td>
<td>1,51</td>
<td>0,68</td>
<td>1,42</td>
<td>0,77</td>
<td>1,50</td>
<td>0,69</td>
</tr>
<tr>
<td>3-jun-05</td>
<td>5,37</td>
<td>1,99</td>
<td>3,38</td>
<td>1,91</td>
<td>3,46</td>
<td>1,95</td>
<td>3,42</td>
<td>1,89</td>
<td>3,48</td>
</tr>
<tr>
<td>8-jun-05</td>
<td>4,20</td>
<td>1,93</td>
<td>2,27</td>
<td>1,94</td>
<td>2,26</td>
<td>1,91</td>
<td>2,29</td>
<td>1,92</td>
<td>2,28</td>
</tr>
</tbody>
</table>

Uit tabel 5.2 blijkt dat de vier voorspellers onderling niet veel van elkaar verschillen; het verschil bedraagt meestal 0,1 tot 0,3 stuks/m². De afwijking van de voorspellingen ten opzichte van de gerealiseerde oogst variërt van 0,02 tot 3,48 stuks/m².
In tabel 5.3 is de afwijking van de modellen weergegeven in percentages.

**Tabel 5.3: Afwijking van de vier modellen in percentages.**

<table>
<thead>
<tr>
<th>Datum</th>
<th>Gerealiseerd Stuks/m²</th>
<th>Voorspelling Model A Afwijking Percentage</th>
<th>Voorspelling Model B Afwijking Percentage</th>
<th>Voorspelling Model C Afwijking Percentage</th>
<th>Voorspelling Model D Afwijking Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-apr-05</td>
<td>3,88</td>
<td>0,50</td>
<td>-87,21%</td>
<td>0,45</td>
<td>-88,29%</td>
</tr>
<tr>
<td>7-apr-05</td>
<td>5,61</td>
<td>0,73</td>
<td>-90,00%</td>
<td>0,81</td>
<td>-85,48%</td>
</tr>
<tr>
<td>14-apr-05</td>
<td>5,27</td>
<td>1,62</td>
<td>-69,19%</td>
<td>1,71</td>
<td>-67,47%</td>
</tr>
<tr>
<td>20-apr-05</td>
<td>2,63</td>
<td>2,94</td>
<td>11,61%</td>
<td>3,09</td>
<td>17,59%</td>
</tr>
<tr>
<td>25-apr-05</td>
<td>2,79</td>
<td>2,77</td>
<td>-0,79%</td>
<td>2,82</td>
<td>0,99%</td>
</tr>
<tr>
<td>28-apr-05</td>
<td>2,56</td>
<td>1,95</td>
<td>-24,00%</td>
<td>1,73</td>
<td>-32,55%</td>
</tr>
<tr>
<td>3-mei-05</td>
<td>4,15</td>
<td>2,06</td>
<td>-50,37%</td>
<td>1,97</td>
<td>-52,49%</td>
</tr>
<tr>
<td>12-mei-05</td>
<td>3,56</td>
<td>2,29</td>
<td>-35,67%</td>
<td>2,18</td>
<td>-38,76%</td>
</tr>
<tr>
<td>18-mei-05</td>
<td>1,48</td>
<td>2,19</td>
<td>47,97%</td>
<td>2,38</td>
<td>60,93%</td>
</tr>
<tr>
<td>24-mei-05</td>
<td>3,05</td>
<td>3,26</td>
<td>6,89%</td>
<td>3,58</td>
<td>17,38%</td>
</tr>
<tr>
<td>27-mei-05</td>
<td>1,93</td>
<td>2,29</td>
<td>18,62%</td>
<td>1,79</td>
<td>-7,11%</td>
</tr>
<tr>
<td>30-mei-05</td>
<td>2,19</td>
<td>1,42</td>
<td>-35,22%</td>
<td>1,51</td>
<td>-31,01%</td>
</tr>
<tr>
<td>3-jun-05</td>
<td>5,37</td>
<td>1,99</td>
<td>-62,94%</td>
<td>1,91</td>
<td>-64,51%</td>
</tr>
<tr>
<td>8-jun-05</td>
<td>4,20</td>
<td>1,93</td>
<td>-54,12%</td>
<td>1,94</td>
<td>-53,76%</td>
</tr>
</tbody>
</table>

Uit tabel 5.3 blijkt dat de afwijking van de voorspellingen ten opzichte van de gerealiseerde oogst kan oplopen van 1% tot bijna 65%. Dit betekent dat de betrouwbaarheid van de voorspellingen kan verschillen van 99% tot 35% nauwkeurig.

De gemiddelde, minimale en maximale nauwkeurigheid per model is als volgt:

<table>
<thead>
<tr>
<th>Model</th>
<th>Gemiddeld</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A</td>
<td>68,35 %</td>
<td>99,21 %</td>
<td>37,06 %</td>
</tr>
<tr>
<td>Model B</td>
<td>65,72 %</td>
<td>99,01 %</td>
<td>35,49 %</td>
</tr>
<tr>
<td>Model C</td>
<td>68,57 %</td>
<td>99,45 %</td>
<td>36,26 %</td>
</tr>
<tr>
<td>Model D</td>
<td>65,44 %</td>
<td>97,99 %</td>
<td>35,25 %</td>
</tr>
</tbody>
</table>

Model C, waarbij twee maal per week wordt ingevoerd en de zetting op hoofd- en zijstengels gescheiden wordt, is het nauwkeurigste model. Het verschil met model A is echter klein. Twee maal per week registreren is nauwkeuriger dan één maal per week registreren, al zijn de verschillen niet groot (+/- 3%).

Bij Van Ruijven vindt de oogstvoorspelling plaats door wekelijks op een vaste dag in enkele registratieveldjes het aantal vruchten te tellen die de week erop geoogst gaan worden. In tabel 5.4 is de nauwkeurigheid van de voorspellingen, die gemaakt zijn met behulp van de methode van Van Ruijven, weergegeven. Uit tabel 5.4 blijkt dat de voorspellingen een nauwkeurigheid hebben van 0% tot 95%. Opgemerkt dient te worden dat de voorspelling in week 20 waarschijnlijk een invoerfout is geweest. De gemiddelde nauwkeurigheid van de voorspellingen (zonder week 20) is 55%. De gemiddelde nauwkeurigheid van model A over dezelfde periode is 79%. Dit betekent dat de voorspellingen via model A nauwkeuriger zijn.
Tabel 5.4: Nauwkeurigheid voorspellingen Van Ruijven paprika in kilo/m² ten opzichte van model A.

<table>
<thead>
<tr>
<th>Week</th>
<th>Gerealiseerd</th>
<th>Voorspelling</th>
<th>Afwijking</th>
<th>Model A</th>
<th>Afwijking model A</th>
<th>Berekende energiebelasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0.76</td>
<td>0.72</td>
<td>-5.26%</td>
<td>0.08</td>
<td>-89.72%</td>
<td>45,8</td>
</tr>
<tr>
<td>14</td>
<td>1.09</td>
<td>0.42</td>
<td>-61.57%</td>
<td>0.18</td>
<td>-83.61%</td>
<td>55,9</td>
</tr>
<tr>
<td>15</td>
<td>0.55</td>
<td>0.15</td>
<td>-72.48%</td>
<td>0.34</td>
<td>-37.46%</td>
<td>60,3</td>
</tr>
<tr>
<td>16</td>
<td>0.78</td>
<td>1.15</td>
<td>48.20%</td>
<td>0.74</td>
<td>-4.47%</td>
<td>57,3</td>
</tr>
<tr>
<td>17</td>
<td>1.07</td>
<td>1.45</td>
<td>35.77%</td>
<td>0.87</td>
<td>-19.01%</td>
<td>52,8</td>
</tr>
<tr>
<td>18</td>
<td>0.94</td>
<td>1.15</td>
<td>21.99%</td>
<td>0.59</td>
<td>-37.15%</td>
<td>62,2</td>
</tr>
<tr>
<td>19</td>
<td>0.55</td>
<td>1.08</td>
<td>97.56%</td>
<td>0.37</td>
<td>-32.32%</td>
<td>70,5</td>
</tr>
<tr>
<td>20</td>
<td>0.49</td>
<td>1.44</td>
<td>191.89%</td>
<td>0.54</td>
<td>10.01%</td>
<td>81,2</td>
</tr>
<tr>
<td>21</td>
<td>0.88</td>
<td>0.8</td>
<td>-9.43%</td>
<td>0.94</td>
<td>5.85%</td>
<td>onbekend</td>
</tr>
</tbody>
</table>

Via het programma Prozet, dat op de markt gebracht wordt door Hidra automatisering BV, is de energiebelasting per week berekend. Deze is in tabel 5.4 weergegeven. De energiebelasting is berekend om te analyseren of er een verband is tussen de afwijking bij voorspellingen en de energiebelasting. Uit tabel 5.4 blijkt dat er geen verband is tussen energiebelasting en de afwijking bij de voorspellingen. Onnauwkeurigheden in de voorspellingen kunnen niet verklaard worden met energiebelasting.

Navraag bij twee bedrijven leert ons dat een productievoorspeller voor tomaat in dezelfde periode 88% nauwkeurig is. Waarbij de minst betrouwbare voorspelling 75% nauwkeurig is. De minst betrouwbare voorspelling bij paprika is slechts 35% nauwkeurig.

5.1.4 Discussie

Uit de resultaten blijkt dat de oogstvoorspellers ongeveer 20% minder nauwkeurig zijn dan een tomatenoogstvoorspeller. Hiervoor zijn tijdens discussies een aantal (mogelijke) oorzaken geformuleerd waarmee de onbetrouwbaarheid van de voorspellers verklaard zou kunnen worden.

In deze paragraaf worden de oorzaken toegelicht en waar mogelijk feitelijk onderbouwd met de gegevens uit de dataset en de registratiecijfers verkregen bij Van Ruiven paprika.

5.1.4.1 Uitgroeiduur

In de voorspellers wordt voorspeld met een uitgroeiduur voor vruchten die gebaseerd is op de gegevens uit 2004. Wanneer de vruchten in 2005 sneller of trager uit zouden groeien, dan voorspellen de modellen een verkeerde ‘theoretische’ oogstdatum.

Om te bepalen of er verschillen zijn tussen de uitgroeiduur in 2004 en 2005 is de gemiddelde uitgroeiduur berekend. Daarnaast is de gemiddelde zettingsduur (phase 0 - fase 2) en de gemiddelde totale duur (phase 0 - oogst) berekend. De resultaten hiervan worden in tabel 5.5 weergegeven. In bijlage 3 is met behulp van staafdiagrammen de spreiding tussen de voorkomende waarden weergegeven, om zo eventuele verschillen tussen 2004 en 2005 vast te stellen.
Tabel 5.5: Gemiddelde, minimum, maximum en modus uitgroeiduur, zettingsduur en totale duur in 2004 en in 2005 (in dagen).

<table>
<thead>
<tr>
<th></th>
<th>Uitgroeiduur (fase 2 - oogst)</th>
<th>Zettingsduur (fase 0 - fase 2)</th>
<th>Totale duur (fase 0 - oogst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>45,5</td>
<td>39</td>
<td>53</td>
</tr>
<tr>
<td>2005</td>
<td>48,2</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>Zettingsduur</td>
<td>2004</td>
<td>8,2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>6,5</td>
<td>3</td>
</tr>
</tbody>
</table>


Uit tabel 5.5 blijkt dat de uitgroeiduur in 2005 gemiddeld 3 dagen langer was dan in 2004. Het grootste aantal vruchten deed er in 2005 zeven dagen langer over om uit te groeien dan het grootste aantal vruchten in 2004. Daarnaast blijkt dat de vruchten in 2005 één dag langer nodig hadden voor het traject bloei (fase 0) tot oogst.

Uit de figuren opgenomen in bijlage 3 blijkt dat de zettingsduur en de uitgroeiduur van vruchten uit 2004 en 2005 van elkaar verschillen. Aangezien vruchten uit 2005 langer nodig hebben voor het traject fase 2 tot oogst, is besloten om de voorspellingen op te schuiven naar een latere ‘theoretische’ oogstdatum. Op deze manier zouden de voorspellingen nauwkeuriger moeten worden, aangezien in de modellen met een te korte uitgroeiduur is gerekend.

Om bovenstaande theorie te toetsen zijn in model A de berekende oogstdaten met 1, 3 en 7 dagen verschoven. Vervolgens zijn de voorspellingen vergeleken met de gerealiseerde productie. Deze vergelijking is weergegeven in tabel 5.6.

Uit tabel 5.5 blijkt dat het verschuiven van de oogstdatum een effect heeft op de voorspellingen. Wanneer de voorspellingen per oogstdatum worden bekeken is niet goed duidelijk welke verschuiving het beste effect heeft. Wanneer de gemiddelde afwijking per verschuiving wordt bekeken blijkt dat het verschuiven met drie dagen het grootste effect heeft. Wel blijft bij een verschuiving van drie dagen de maximale afwijking ongeveer 63%, deze is net zo groot als bij het model zonder verschuiving.

Model A rekent met de gemiddelde uitgroeiduur uit 2004, deze is 45,5 dagen. Uit tabel 5.4 bleek dat in 2005 de gemiddelde uitgroeiduur 48,2 dagen is, ofwel drie dagen langer. Het verschuiven van de oogstdatum met drie dagen levert een positief effect op bij de
betrouwbaarheid van de modellen. Waarschijnlijk worden de modellen ongeveer 10% nauwkeuriger wanneer er met de juiste uitgroeiduur wordt gerekend.

5.1.4.2 Voorspelling met vaste percentages
Bij het voorspellen is niet alleen gebruik gemaakt van de gemiddelde uitgroeiduur van de vruchten uit 2004. Vaste uitgroeipercentages zijn gebruikt om meer spreiding te krijgen in de stuksproductie per oogstdatum. Hierbij zijn drie categorieën te onderscheiden namelijk een uitgroeiduur van 42 dagen of minder, een uitgroeiduur tussen de 42 en 49 dagen en een uitgroeiduur van 49 dagen of langer.

Aangenomen is dat deze percentages per zettingsdatum gelijk zijn. Of deze aanname correct is, is onderzocht. Hiervoor is de uitgroeiduur van alle vruchten van een bepaalde zettingsdatum genomen en is het aandeel op het totaal per categorie berekend. De resultaten zijn weergegeven in figuur 5.1.

Wanneer in figuur 5.1 de percentages vergeleken worden met de in het model gebruikte percentages, dan zijn er grote verschillen te constateren. Deze verschillen zijn enigszins te verklaren doordat de gemiddelde uitgroeiduur van de vruchten uit 2005 langer is dan die uit 2004 (zie 5.1.4.1). De in het model gebruikte percentages zijn gebaseerd op de gegevens uit 2004.

Daarnaast is de verhouding van de percentages tussen zettingsdatums zeer verschillend. Dit leidt tot een onnauwkeurige voorspelling aangezien de ‘theoretische’ oogstdatum aan de hand van vaste percentages wordt voorspeld. Hoe groot deze onnauwkeurigheid is, is moeilijk te bepalen. Dit komt doordat de factor gemiddelde uitgroeiduur een rol speelt bij de verhouding van de percentages. Het idee is dat deze onnauwkeurigheid voor sommige zettingsdata op kan lopen tot +/- 40%.

Tabel 5.6: Overzicht voorspellingen bij verschuiven oogstdatum ten opzichte van gerealiseerde oogst.

<table>
<thead>
<tr>
<th>Oogstdatum</th>
<th>Gerealiseerd Stuks/m²</th>
<th>Voorspellingen</th>
<th>Afwijking %</th>
<th>Afwijking %</th>
<th>Afwijking %</th>
<th>Afwijking %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model A</td>
<td>Afwijking</td>
<td>+1 dag</td>
<td>+3 dagen</td>
<td>+7 dagen</td>
<td>+7 dagen</td>
</tr>
<tr>
<td>1-apr-05</td>
<td>3,88</td>
<td>0,50</td>
<td>-87,21%</td>
<td>0,37</td>
<td>-90,41%</td>
<td>0,12</td>
</tr>
<tr>
<td>7-apr-05</td>
<td>5,61</td>
<td>0,73</td>
<td>-87,00%</td>
<td>0,68</td>
<td>-87,92%</td>
<td>0,58</td>
</tr>
<tr>
<td>14-apr-05</td>
<td>3,03</td>
<td>1,62</td>
<td>-46,42%</td>
<td>1,54</td>
<td>-49,13%</td>
<td>1,38</td>
</tr>
<tr>
<td>20-apr-05</td>
<td>2,63</td>
<td>2,94</td>
<td>11,61%</td>
<td>2,60</td>
<td>-21,60%</td>
<td>1,37</td>
</tr>
<tr>
<td>25-apr-05</td>
<td>2,79</td>
<td>2,77</td>
<td>-0,79%</td>
<td>2,79</td>
<td>0,03%</td>
<td>2,70</td>
</tr>
<tr>
<td>28-apr-05</td>
<td>2,56</td>
<td>1,95</td>
<td>-24,00%</td>
<td>1,87</td>
<td>-26,99%</td>
<td>1,72</td>
</tr>
<tr>
<td>3-mei-05</td>
<td>4,15</td>
<td>2,06</td>
<td>-50,37%</td>
<td>2,33</td>
<td>-43,89%</td>
<td>2,78</td>
</tr>
<tr>
<td>12-mei-05</td>
<td>3,56</td>
<td>2,29</td>
<td>-35,67%</td>
<td>2,44</td>
<td>-31,53%</td>
<td>2,86</td>
</tr>
<tr>
<td>18-mei-05</td>
<td>3,18</td>
<td>1,95</td>
<td>-35,22%</td>
<td>1,88</td>
<td>-35,22%</td>
<td>1,52</td>
</tr>
<tr>
<td>24-mei-05</td>
<td>3,05</td>
<td>3,26</td>
<td>6,89%</td>
<td>2,98</td>
<td>-2,17%</td>
<td>2,83</td>
</tr>
<tr>
<td>27-mei-05</td>
<td>1,93</td>
<td>2,29</td>
<td>18,62%</td>
<td>2,71</td>
<td>40,49%</td>
<td>1,77</td>
</tr>
<tr>
<td>30-mei-05</td>
<td>2,19</td>
<td>1,42</td>
<td>-35,22%</td>
<td>1,42</td>
<td>-35,22%</td>
<td>2,29</td>
</tr>
<tr>
<td>3-jun-05</td>
<td>5,37</td>
<td>1,99</td>
<td>-62,94%</td>
<td>1,94</td>
<td>-61,83%</td>
<td>1,94</td>
</tr>
<tr>
<td>8-jun-05</td>
<td>1,20</td>
<td>1,93</td>
<td>-54,12%</td>
<td>1,99</td>
<td>-52,60%</td>
<td>2,28</td>
</tr>
</tbody>
</table>

Gemiddelde afwijking: 31,65%, 28,90%, 22,13%, 32,41%
Met deze kennis is het model betrouwbaarder te maken door er een zelfcorrigerend model van te maken. Hiermee wordt bedoeld om naast het invoeren van nieuwe zetting en abortie, ook de werkelijke oogst met zettingsdatum in te voeren. Met enkele formules kan het model dan berekenen hoeveel vruchten van een bepaalde zettingsdatum er zijn geoogst. Daarnaast kan het model de percentages keer op keer doorrekenen zodat bekend is hoeveel vruchten er op het voorspelde moment geoogst worden en hoeveel vruchten er eerder geoogst zijn of juist later geoogst worden. Hiermee wordt bij de volgende voorspellingen dan rekening gehouden, zodat het model zichzelf kan corrigeren.

Het programma Prozet beschikt over een soortgelijke formule. Het programma berekent hoeveel procent van de vruchten in een bepaalde periode geoogst wordt. Daarnaast is het mogelijk om bij het invoeren van nieuwe zetting een schatting te maken van de uitgroeipercentages. Het verschil is dat Prozet niet zelfcorrigerend is. Dit betekent dat er geen rekening wordt gehouden met de geschatte uitgroeipercentages en de werkelijke (berekende) uitgroeipercentages.
5.1.4.3 Representativiteit registratieveldjes
Aangezien de voorspellingen over het algemeen lager zijn dan de werkelijke productie, is het mogelijk dat de registratieveldjes niet altijd representatief zijn geweest voor de hele afdeling. Om dit te onderzoeken is de wekelijkse zetting uit de registratieveldjes vergeleken met de wekelijkse zetting uit de veldjes die Van Ruijven zelf registreert. Deze vergelijking is in tabel 5.7 weergegeven.

Tabel 5.7: Wekelijkse zetting in registratieveldjes en in veldjes Van Ruijven.

<table>
<thead>
<tr>
<th>Weeknummer</th>
<th>Zetting van Ruijven aantal/m²</th>
<th>Zetting registratieveldjes aantal/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2,4</td>
<td>1,0</td>
</tr>
<tr>
<td>8</td>
<td>1,8</td>
<td>1,2</td>
</tr>
<tr>
<td>9</td>
<td>3,9</td>
<td>3,0</td>
</tr>
<tr>
<td>10</td>
<td>10,3</td>
<td>7,3</td>
</tr>
<tr>
<td>11</td>
<td>3,7</td>
<td>4,8</td>
</tr>
<tr>
<td>12</td>
<td>2,6</td>
<td>3,1</td>
</tr>
<tr>
<td>13</td>
<td>1,2</td>
<td>1,5</td>
</tr>
<tr>
<td>14</td>
<td>5,5</td>
<td>5,3</td>
</tr>
<tr>
<td>15</td>
<td>2,6</td>
<td>6,7</td>
</tr>
<tr>
<td>16</td>
<td>5,0</td>
<td>3,2</td>
</tr>
<tr>
<td>17</td>
<td>6,2</td>
<td>4,6</td>
</tr>
<tr>
<td>18</td>
<td>4,8</td>
<td>8,4</td>
</tr>
<tr>
<td>19</td>
<td>9,6</td>
<td>10,7</td>
</tr>
<tr>
<td>20</td>
<td>13,3</td>
<td>9,2</td>
</tr>
<tr>
<td>Totaal</td>
<td>72,9</td>
<td>70,1</td>
</tr>
</tbody>
</table>

Uit tabel 5.7 blijkt dat in de registratieveldjes bijna 3 vruchten per m² minder zijn gezet. Dit kan betekenen dat de registratieveldjes minder representatief zijn dan de veldjes waarin Van Ruijven registreert. Dit hoeft echter niet zo te zijn, aangezien er verschillen kunnen zijn in de waarnemingen. De grote verschillen tussen de verschillende weken duiden hierop. Daarnaast kunnen er verschillen zijn in het aantal vruchten dat aborteert. Vanwege deze onduidelijkheden is de oogst in de registratieveldjes vergeleken met de oogst in de hele afdeling. De resultaten hiervan zijn weergegeven in tabel 5.8.

Uit tabel 5.8 blijkt dat er in de registratieveldjes 17,5% minder kilo's zijn geoogst dan in de hele afdeling. Op bepaalde oogstdata is er in de veldjes 50% minder geoogst dan in de hele afdeling. Uit de registratieveldjes worden bij vrijwel elke oogstronde minder vruchten geoogst dan in de hele afdeling. Er is dus sprake van een consequente onderschatting. Deze onderschatting betekent logischerwijs dat er bijna elke telling te weinig zetting is geregistreerd. Mogelijk komt dit door de ‘stress’ die de planten hebben ondervonden van de plantobservatie. Het is ook mogelijk dat er in de veldjes meer stengels zijn gebroken of meer vruchten zijn geaborteerd. Een combinatie van beide factoren ligt het meest voor de hand.

Wanneer de productie in het veldje gemiddeld 17,5% achterblijft, dan zijn de voorspellingen gemiddeld 17,5% onnauwkeurig.
Tabel 5.8: Verschil tussen gerealiseerde oogst van de afdeling en van de registratieveldjes.

| Oogstdatum | Productie afdeling | Productie veldjes | Verschil  
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-apr-05</td>
<td>0,76</td>
<td>1,21</td>
<td>59,2%</td>
</tr>
<tr>
<td>7-apr-05</td>
<td>1,02</td>
<td>0,86</td>
<td>-15,5%</td>
</tr>
<tr>
<td>14-apr-05</td>
<td>0,51</td>
<td>0,34</td>
<td>-33,6%</td>
</tr>
<tr>
<td>20-apr-05</td>
<td>0,54</td>
<td>0,47</td>
<td>-12,2%</td>
</tr>
<tr>
<td>25-apr-05</td>
<td>0,59</td>
<td>0,59</td>
<td>0,9%</td>
</tr>
<tr>
<td>28-apr-05</td>
<td>0,54</td>
<td>0,49</td>
<td>-8,5%</td>
</tr>
<tr>
<td>3-mei-05</td>
<td>0,87</td>
<td>0,38</td>
<td>-56,4%</td>
</tr>
<tr>
<td>12-mei-05</td>
<td>0,74</td>
<td>0,63</td>
<td>-14,7%</td>
</tr>
<tr>
<td>18-mei-05</td>
<td>0,32</td>
<td>0,31</td>
<td>-3,9%</td>
</tr>
<tr>
<td>24-mei-05</td>
<td>0,68</td>
<td>0,74</td>
<td>8,2%</td>
</tr>
<tr>
<td>27-mei-05</td>
<td>0,43</td>
<td>0,34</td>
<td>-21,2%</td>
</tr>
<tr>
<td>30-mei-05</td>
<td>0,48</td>
<td>0,41</td>
<td>-13,8%</td>
</tr>
<tr>
<td>3-jun-05</td>
<td>1,22</td>
<td>0,61</td>
<td>-49,9%</td>
</tr>
<tr>
<td>8-jun-05</td>
<td>0,87</td>
<td>0,50</td>
<td>-42,4%</td>
</tr>
<tr>
<td><strong>Totaal</strong></td>
<td><strong>9,56</strong></td>
<td><strong>7,89</strong></td>
<td><strong>-17,5%</strong></td>
</tr>
</tbody>
</table>

Om het model betrouwbareder te maken is het mogelijk om een formule in te bouwen om de representativiteit van de veldjes te controleren. Wanneer afwijkingen geconstateerd worden dan is het mogelijk om de nieuwe voorspellingen te corrigeren. Wanneer een dergelijke formule wordt ingebouwd, blijft de vraag in hoeverre de nauwkeurigheid wordt vergroot. Dit aangezien de voorspellingen worden aangepast op basis van gegevens uit de historie. Deze gegevens hoeven niet voor de toekomst te gelden.

5.1.4.4 Algemene opmerkingen

In voorgaande drie paragrafen is een aantal mogelijke oorzaken toegelicht die elk een duidelijk effect hebben op de nauwkeurigheid van de voorspeller. Daarnaast is het mogelijk dat een combinatie van de drie factoren zorgt voor een zeer grote onnauwkeurigheid. Als voorbeeld wordt de grootste onnauwkeurigheid in de voorspellingen genomen. Deze vond plaats op 3 juni, de onnauwkeurigheid betrof toen 65%. Deze onnauwkeurigheid zou als volgt opgebouwd kunnen zijn:

- Gemiddelde uitgroeiduur: 10% onnauwkeurigheid;
- Gebruik vaste percentages: +/- 37,5% onnauwkeurigheid;
- Representativiteit veldjes: 17,5% onnauwkeurigheid.

De combinatie van deze drie factoren kan ook in omgekeerde richting werken. Door deze combinatie wordt de voorspelling dan onnauwkeuriger. In dit geval hebben nog andere factoren invloed op de uitgroeiduur van vruchten.

Andere factoren kunnen bepaalde klimaatsomstandigheden zijn of de energiebelasting van de plant. In deze fase van het onderzoek was er niet voldoende tijd om deze factoren te onderzoeken. Bij onderzoek naar de invloed van de energiebelasting op de uitgroeiduur kan het programma Prozet gebruikt worden. Wanneer in 2006 de gegevens van 2005 ingevoerd worden is het de moeite waard om de energiebelasting erbij te betrekken.
5.1.5 Conclusies
Het voorspellen met de vier modellen levert grote variatie in de nauwkeurigheid (99% - 35%) op. Duidelijk is dat het met deze methode van voorspellen niet mogelijk is om de oogst één week van tevoren nauwkeurig te voorspellen.

Uit de vergelijking van de vier modellen blijkt dat tweewekelijks registreren nauwkeuriger is dan wekelijks registreren. Al is het verschil minimaal, namelijk 3%. Het gescheiden registreren van zetting aan de hoofd- en zijstengels maakt de modellen niet veel nauwkeuriger.


Ten tweede is het voorspellen met vaste uitgroeipercentages onnauwkeurig. Dit komt doordat de uitgroeipercentages per zettingsdatum verschillen.

Als laatste is gebleken dat de registratieveldjes niet representatief waren. Dit betekent dat er in de veldjes minder zetting is geteld. Vervolgens wordt er in de registratieveldjes minder geoogst in vergelijking met de complete afdeling. In de registratieveldjes zijn 17,5% minder kilo’s geoogst dan in de gehele afdeling.

5.1.6 Aanbevelingen
Wanneer er één van de vier modellen specifiek aanbevolen moet worden, dan is dit model A. Dit model is samen met model C het nauwkeurigst. De registratie en invoer van model A is eenvoudiger aangezien er geen rekening gehouden hoeft te worden met hoofd- en zijstengels.


Aangezien het gebruik van model A bij het voorspellen van de oogst grote onnauwkeurigheden oplevert, is het de vraag of het gebruik nuttig is. Nuttiger lijkt het om in het najaar van 2005 enkele aanpassingen aan het model te doen. Deze aanpassingen zijn het toevoegen van een module voor zelfcorrectie en een module ter compensatie voor veranderingen in de representativiteit van de registratieveldjes.

5.2 Gewichtsvoorspelling

5.2.1 Inleiding
Gewichtsvoorspelling is gedaan op basis van de formule die is opgesteld op basis van de gegevens uit 2004 (zie paragraaf 2.2.4). Het doel van deze gewichtsvoorspelling is het onderzoeken van de mogelijkheden om op basis van historische gegevens uit 2004, het vruchtwegichte van vruchten uit 2005 te voorspellen.
5.2.2 Materiaal en methode

De gewichtsvoorspelling is niet van te voren gedaan aangezien er in de modellen nog geen toepassingsmogelijkheden zijn voor gewichtsvoorspelling per oogstdatum. Gewichtsvoorspelling heeft plaatsgevonden door op de oogstdag de diameter te meten. Met behulp van de formule en deze diameter is het vruchtgewicht bepaald.

Ten eerste is de nauwkeurigheid van voorspellingen aan individuele vruchten onderzocht. Daarnaast is de voorspelling van groepen vruchten met dezelfde oogstdatum vergeleken met de productie van de registratieveldjes op deze datum. Op deze manier is het mogelijk om eerlijk te vergelijken, waarbij geen rekening gehouden hoeft de worden met de representativiteit van de veldjes.

Van alle vruchten die uit de registratieveldjes geoogst zijn, is op basis van de diameter bij oogst en met behulp van de formule het individuele gewicht voorspeld. Deze voorspelling is vergeleken met het werkelijke gewicht van de geoogste vruchten. Daarnaast is het totale voorspelde gewicht van een groep vruchten vergeleken met het werkelijke totale gewicht van deze vruchten.

5.2.3 Resultaten

Een overzicht van de resultaten voor gewichtsvoorspelling aan individuele vruchten is opgenomen in bijlage 4. In dit overzicht is per voorkomende diameter het voorspelde gewicht, de gemiddelde afwijking en de maximale over- en onderschatting weergegeven.

De gemiddelde afwijking van alle vruchten is 8,9%. Wanneer dit gemiddelde vergeleken wordt met groepen van dezelfde vruchtdiameter dan blijkt dat de gemiddelde afwijking van fijne vruchten groter is dan het gemiddelde van alle vruchten. Voor grove vruchten is deze gemiddelde afwijking juist kleiner dan het gemiddelde van alle vruchten.

Voorspellingen aan individuele vruchten met behulp van de formule, kunnen een onderschatting hebben van 25% en een overschatting van 90%.

De gewichtsvoorspelling per oogstdatum voor groepen vruchten en de vergelijking met het werkelijk geoogst gewicht zijn te vinden in tabel 5.9. Het verschil is omgerekend en wordt in de tabel weergegeven als overschatting of onderschatting in kilogram per hectare.

Uit tabel 5.9 blijkt dat de nauwkeurigheid van gewichtsvoorspelling per oogstdatum betrouwbaarder is dan gewichtsvoorspelling aan individuele vruchten. Per oogstdatum is het verschil tussen de voorspelde productie en de gerealiseerde productie maximaal 527 kg per hectare. Afhankelijk van de hoeveelheid die er dagelijks geoogst wordt betekent dit dat de gewichtsvoorspelling 90% tot 99% nauwkeurig is. Gemiddeld is de gewichtsvoorspelling 96% nauwkeurig. Bij kleinere hoeveelheden is de nauwkeurigheid kleiner, maar is het verschil tussen voorspelde en gerealiseerde productie in kilo per hectare gelijk.
<table>
<thead>
<tr>
<th>Oogst datum</th>
<th># Vruchten</th>
<th>Aantal kilo's voorspeld</th>
<th>Aantal kilo's geoogst</th>
<th>Verschil (kilo's/hectare)</th>
<th>Afwijking %</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-mrt-05</td>
<td>18</td>
<td>3,3</td>
<td>3,7</td>
<td>-202</td>
<td>-10,00%</td>
</tr>
<tr>
<td>29-mrt-05</td>
<td>47</td>
<td>8,7</td>
<td>9,7</td>
<td>-527</td>
<td>-9,92%</td>
</tr>
<tr>
<td>31-mrt-05</td>
<td>30</td>
<td>4,9</td>
<td>5,3</td>
<td>-216</td>
<td>-7,42%</td>
</tr>
<tr>
<td>4-apr-05</td>
<td>67</td>
<td>10,9</td>
<td>11,0</td>
<td>-64</td>
<td>-1,06%</td>
</tr>
<tr>
<td>7-apr-05</td>
<td>43</td>
<td>7,3</td>
<td>7,3</td>
<td>-12</td>
<td>-0,30%</td>
</tr>
<tr>
<td>11-apr-05</td>
<td>28</td>
<td>4,5</td>
<td>4,4</td>
<td>40</td>
<td>1,62%</td>
</tr>
<tr>
<td>14-apr-05</td>
<td>6</td>
<td>1,0</td>
<td>1,0</td>
<td>6</td>
<td>1,07%</td>
</tr>
<tr>
<td>18-apr-05</td>
<td>18</td>
<td>3,9</td>
<td>4,0</td>
<td>-31</td>
<td>-1,43%</td>
</tr>
<tr>
<td>21-apr-05</td>
<td>25</td>
<td>5,4</td>
<td>5,6</td>
<td>-90</td>
<td>-2,96%</td>
</tr>
<tr>
<td>25-apr-05</td>
<td>42</td>
<td>9,0</td>
<td>9,0</td>
<td>26</td>
<td>0,54%</td>
</tr>
<tr>
<td>28-apr-05</td>
<td>40</td>
<td>8,6</td>
<td>8,6</td>
<td>11</td>
<td>0,23%</td>
</tr>
<tr>
<td>2-mei-05</td>
<td>24</td>
<td>5,1</td>
<td>5,2</td>
<td>-33</td>
<td>-1,14%</td>
</tr>
<tr>
<td>5-mei-05</td>
<td>3</td>
<td>0,6</td>
<td>0,7</td>
<td>-6</td>
<td>-1,55%</td>
</tr>
<tr>
<td>9-mei-05</td>
<td>48</td>
<td>10,2</td>
<td>10,5</td>
<td>-179</td>
<td>-3,10%</td>
</tr>
<tr>
<td>12-mei-05</td>
<td>8</td>
<td>1,7</td>
<td>1,7</td>
<td>10</td>
<td>1,09%</td>
</tr>
<tr>
<td>17-mei-05</td>
<td>19</td>
<td>4,4</td>
<td>4,6</td>
<td>-112</td>
<td>-4,41%</td>
</tr>
<tr>
<td>19-mei-05</td>
<td>10</td>
<td>2,0</td>
<td>2,0</td>
<td>-37</td>
<td>-3,27%</td>
</tr>
<tr>
<td>23-mei-05</td>
<td>48</td>
<td>10,6</td>
<td>11,2</td>
<td>-371</td>
<td>-6,00%</td>
</tr>
<tr>
<td>25-mei-05</td>
<td>9</td>
<td>2,0</td>
<td>2,2</td>
<td>-106</td>
<td>-8,93%</td>
</tr>
<tr>
<td>30-mei-05</td>
<td>56</td>
<td>11,5</td>
<td>12,1</td>
<td>-322</td>
<td>-4,84%</td>
</tr>
<tr>
<td>2-jun-05</td>
<td>44</td>
<td>9,2</td>
<td>9,6</td>
<td>-187</td>
<td>-3,55%</td>
</tr>
<tr>
<td>6-jun-05</td>
<td>25</td>
<td>5,4</td>
<td>5,6</td>
<td>-108</td>
<td>-3,52%</td>
</tr>
<tr>
<td>8-jun-05</td>
<td>21</td>
<td>4,2</td>
<td>4,3</td>
<td>-41</td>
<td>-1,71%</td>
</tr>
<tr>
<td>13-jun-05</td>
<td>52</td>
<td>10,8</td>
<td>10,9</td>
<td>-66</td>
<td>-1,11%</td>
</tr>
<tr>
<td>16-jun-05</td>
<td>51</td>
<td>10,3</td>
<td>10,1</td>
<td>79</td>
<td>1,42%</td>
</tr>
<tr>
<td>20-jun-05</td>
<td>47</td>
<td>9,0</td>
<td>8,7</td>
<td>195</td>
<td>4,09%</td>
</tr>
</tbody>
</table>

*Gemiddeld 3,32%*
5.2.4 Discussie

Nu blijkt dat gewichtsvoorspelling met behulp van de formule uit 2004 mogelijk is, is er nog één probleem. Dit is de vraag op welk moment er een goede indicatie is van de diameter van de vrucht bij oogst. Bij zetting is deze nog lang niet bekend en in hoofdstuk 4 is gebleken dat de diameter na het moment hardgroen nog toeneemt.

Zo is er uiteindelijk nog gekeken naar het moment waarop de diameter van de vruchten niet meer toeneemt. Indien er een vast moment voor de oogst is waarbij de diameter van de vruchten constant blijft, zou dit een goed moment kunnen zijn voor het meten van de diameter.

Uit bijlage 5 blijkt dat de spreiding in de duur tussen het moment waarop de diameter constant blijft en het moment van oogst zeer groot is. Hiermee wordt duidelijk dat er geen bruikbaar vast moment is waarop de diameter van de vruchten gemeten kan worden.

Een tweede probleem is de koppeling tussen uitgroeiduur en diameter. Op welke wijze kun je voorspellen wanneer een vrucht met een bepaalde diameter geoogst gaat worden?

5.2.5 Conclusies

Op basis van de diameter bij oogst en de formule opgesteld uit de gegevens van 2004 is het niet goed mogelijk om het gewicht van individuele vruchten te bepalen. Wel is het totale gewicht van een groep vruchten van een bepaalde oogstdatum nauwkeurig te voorspellen.

Probleem blijft om een moment te vinden waarop er een goede indicatie is van de diameter die de vrucht bij oogst heeft. Daarnaast zal onderzoek plaats moeten vinden naar het oogstmoment van vruchten zodat bekend wordt wanneer vruchten met een bepaalde diameter geoogst worden.

5.2.6 Aanbevelingen

Aanbevolen wordt om het voorspellen van gewicht met behulp van de diameter in een model in te bouwen. Hiervoor zal eerst meer onderzoek gedaan moeten worden naar een goed indicatiemoment voor de einddiameter. Daarnaast wordt aanbevolen om onderzoek te doen naar de koppeling tussen het moment van oogst en de diameter bij oogst.

5.3 Voorspellen van sortering

5.3.1 Inleiding

Bij het voorspellen van de productie is naast het aantal stuks en het gewicht van de vruchten, ook de verhouding tussen de sorteringen van belang. De sorteringen van paprika worden bepaald aan de hand van de diameter. Aangezien deze bekend is, is het mogelijk om de sortering te voorspellen. Doel van deze paragraaf is de nauwkeurigheid en de mogelijkheden van het voorspellen van sorteringklasse weer te geven.
5.3.2 Materiaal en methode

Op basis van de diameter bij de oogst is per oogstdatum het percentage vruchten per sorteringklasse uitgerekend. Deze is vervolgens vergeleken met de werkelijke percentages vruchten per sorteringklasse van die dag.

5.3.3 Resultaten

In tabel 5.10 zijn de resultaten weergegeven waarbij de eerste sorteringklasse buiten beschouwing is gelaten. In deze klasse komt maar een 0,5% van het totaal aantal vruchten. Aangezien niet van alle oogstdaten de benodigde gegevens beschikbaar waren, zijn niet alle oogstdaten in de tabel opgenomen.

Uit tabel 5.10 blijkt dat de nauwkeurigheid van het voorspellen van de sorteringklasse erg kan variëren. De kleinste afwijking is ongeveer 5% terwijl de grootste afwijking 330% bedraagt. De gemiddelde afwijking is 63,4%, de gemiddelde afwijking per sorteringklasse is:

- Sortering 62,5 - 72: 125%
- Sortering 73 - 81: 31%
- Sortering 82 - 92: 33%
- Sortering +93: 65%

Tabel 5.10: Overzicht voorspellingen percentage per sortering en afwijking ten opzichte van werkelijk percentage per sortering.

<table>
<thead>
<tr>
<th>Sortering 62,5-72</th>
<th>Sortering 73-81</th>
<th>Sortering 82-92</th>
<th>Sortering +93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voorspelling</td>
<td>Werkelijk</td>
<td>Afwijking</td>
<td>Voorspelling</td>
</tr>
<tr>
<td>31-mrt</td>
<td>33,33%</td>
<td>7,66%</td>
<td>334,97%</td>
</tr>
<tr>
<td>7-apr</td>
<td>25,58%</td>
<td>15,93%</td>
<td>60,55%</td>
</tr>
<tr>
<td>18-apr</td>
<td>0,00%</td>
<td>12,83%</td>
<td>-100,00%</td>
</tr>
<tr>
<td>25-apr</td>
<td>2,38%</td>
<td>1,50%</td>
<td>58,68%</td>
</tr>
<tr>
<td>28-apr</td>
<td>5,00%</td>
<td>1,98%</td>
<td>152,59%</td>
</tr>
<tr>
<td>23-mei</td>
<td>0,00%</td>
<td>1,13%</td>
<td>-100,00%</td>
</tr>
<tr>
<td>30-mei</td>
<td>5,36%</td>
<td>2,29%</td>
<td>133,98%</td>
</tr>
<tr>
<td>2-jun</td>
<td>4,55%</td>
<td>3,09%</td>
<td>47,06%</td>
</tr>
<tr>
<td>8-jun</td>
<td>0,00%</td>
<td>3,09%</td>
<td>-100,00%</td>
</tr>
<tr>
<td>13-jun</td>
<td>77,77%</td>
<td>17,11%</td>
<td>236,43%</td>
</tr>
<tr>
<td>16-jun</td>
<td>3,92%</td>
<td>2,53%</td>
<td>55,19%</td>
</tr>
<tr>
<td>Sortering 82-92</td>
<td>Sortering +93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voorspelling</td>
<td>Werkelijk</td>
<td>Afwijking</td>
<td>Voorspelling</td>
</tr>
<tr>
<td>31-mrt</td>
<td>23,33%</td>
<td>48,55%</td>
<td>-51,94%</td>
</tr>
<tr>
<td>7-apr</td>
<td>27,91%</td>
<td>42,53%</td>
<td>-34,38%</td>
</tr>
<tr>
<td>18-apr</td>
<td>72,22%</td>
<td>48,06%</td>
<td>50,27%</td>
</tr>
<tr>
<td>25-apr</td>
<td>76,19%</td>
<td>57,37%</td>
<td>32,81%</td>
</tr>
<tr>
<td>28-apr</td>
<td>60,00%</td>
<td>56,97%</td>
<td>5,32%</td>
</tr>
<tr>
<td>23-mei</td>
<td>77,08%</td>
<td>51,63%</td>
<td>49,31%</td>
</tr>
<tr>
<td>30-mei</td>
<td>64,29%</td>
<td>46,96%</td>
<td>36,88%</td>
</tr>
<tr>
<td>2-jun</td>
<td>65,91%</td>
<td>49,99%</td>
<td>31,84%</td>
</tr>
<tr>
<td>8-jun</td>
<td>66,67%</td>
<td>50,31%</td>
<td>32,51%</td>
</tr>
</tbody>
</table>
5.3.4 Discussie

De nauwkeurigheid van het voorspellen van sorteringklasse is zeer variabel. Enerzijds wordt dit veroorzaakt door de grootte van de steekproef. De steekproef is meestal tussen de 10 en 50 vruchten groot. Wanneer op dit aantal vruchten enkele vruchten in de sorteringklasse 62,5-72 terechtkomen dan is het percentage van deze klasse al snel 10%. Dit terwijl gemiddeld over een hele afdeling meestal maar 3% in klasse 62,5-72 terechtkomt. Uit de gemiddelde afwijking per sorteringklasse blijkt dat de afwijking in deze klasse veel groter is als van de sorteringklasse waar veel vruchten in terecht komen.

Een tweede verklaring voor de onnauwkeurigheden bij het voorspellen van sorteringklasse is te vinden in het verschil waarop de manier waarop de diameter bepaald is. Onderzoek heeft uitgewezen dat er verschillen zijn tussen de diameterbepaling met de hand (appeldiameter) en machinaal (sorteermachine). Uit tabel 5.11 blijkt dat bij handmatige meting de diameter onderschat wordt ten opzichte van de sorteermachine.

<table>
<thead>
<tr>
<th>Sorteringklassen</th>
<th>Sorteermachine</th>
<th>%</th>
<th>Handmatig</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 75</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>75 - 85</td>
<td>29</td>
<td>30</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>85 - 95</td>
<td>51</td>
<td>53</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>&gt; 95</td>
<td>12</td>
<td>13</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Totaal</td>
<td>96</td>
<td>100</td>
<td>96</td>
<td>100</td>
</tr>
</tbody>
</table>

Bij het voorspellen van de sorteringklasse onstaat hetzelfde probleem als bij de gewichtsvoorspelling. De diameter van de vrucht is pas bekend bij de oogst. De voorspelling moet eerder plaats vinden waarvoor een moment nodig is waarop de diameter bij oogst bekend is. Tot op heden is dit moment niet gevonden.

5.3.5 Conclusies

Nauwkeurig voorspellen van sorteringklasse is niet mogelijk aangezien de steekproef in de registratieveldjes te klein is. Hierdoor ontstaat een beeld dat niet altijd representatief is voor de afdeling. Daarnaast is er geen moment voor oogst waarop een goede indicatie van de diameter bij oogst is gevonden.

5.3.6 Aanbevelingen

Aanbevolen wordt om de sorteringklasse niet te voorspellen op basis van de percentages vruchten per sorteringklasse uit de registratieveldjes. Waarschijnlijk is voorspellen op basis van historische gegevens nauwkeuriger waarbij rekening wordt gehouden met het feit dat de eerste vruchten van een zetsel grover zijn dan de laatste. Dit zal verder onderzoek eerst aan moeten tonen.
6 Einddiscussie

Het voorspellen van de productie van paprika vertoont nog grote onnauwkeurigheden. Enkele van deze onnauwkeurigheden kunnen zijn ontstaan door meetfouten in het onderzoek. Daarnaast is het mogelijk dat de voorspellingen onnauwkeuriger zijn geworden door invloeden van buitenaf zoals afgestoten vruchten, gebroken planten en/of milieu-invloeden.

Deze onnauwkeurigheden kunnen ook zijn ontstaan door fouten in de registratie van de plantobservatie. Als voorbeeld wordt de maat van een gezet vruchtje genoemd. Het is mogelijk dat de waarnemers in 2005 vruchtjes eerder gezet hebben beoordeeld dan de waarnemers in 2004.

Een andere onnauwkeurigheid is de betrouwbaarheid van de gegevens uit de registratie van paprikakwekerij van Ruijven. Door de nodige bewerkingen van deze gegevens kunnen fouten ontstaan zijn. De hoeveelheid productie van de afdeling op een bepaalde oogstdatum is bepaald door interpolatie van de gegevens uit de registratie van het bedrijf.
7 Eindconclusies
Uit het onderzoek is een groot aantal conclusies voortgekomen. In dit hoofdstuk worden deze conclusies weergegeven.

7.1 Conclusies ten aanzien van vragen dataset 2004
Bij het beantwoorden van de vragen voortgekomen uit het onderzoek van Den Besten en Elshout in 2005 zijn de volgende conclusies naar voren gekomen:

- Er is geen bruikbaar verband gevonden tussen vruchtdiameter en uitgroeiduur, tussen lengte en uitgroeiduur en tussen vruchtgewicht en uitgroeiduur. Deze drie parameters kunnen niet gebruikt worden bij het voorspellen van de uitgroeiduur.
- In tegenstelling tot de conclusies van Den Besten en Elshout uit 2005, is er wel een verband gevonden tussen vruchtdiameter en vruchtgewicht. Met dit verband is de volgende formule opgesteld waarmee het vruchtgewicht geschat kan worden:

\[ Vruchtgewicht = 4,445 \times \text{vruchtdiameter} - 171,6 \]

- Bij zetsels met weinig vruchten hebben de vruchten gemiddeld genomen een hoger vruchtgewicht dan de vruchten uit zetsels met veel vruchten. Deze conclusie sluit aan bij de conclusie van Jansen en Zondag (2004), waar geconstateerd werd dat de eerst gezette van een zetsel grover en zwaarder zijn dan de laatst gezette vruchten uit een zetsel.
- Er bestaat geen bruikbare relatie tussen vruchtdiameter en zettingsdatum, tussen vruchtengte en zettingsdatum en vruchtgewicht en zettingsdatum. De zettingsdatum kan niet gebruikt worden om vruchtparameters te voorspellen.
- Het vaker voorkomen van vruchtrot bij grove vruchten kan niet verklaard worden door een langere zettingsduur of een langere uitgroeiduur van grove vruchten. Er is namelijk geen verband tussen vruchtdiameter en zettingsduur of tussen vruchtdiameter en uitgroeiduur.

7.2 Conclusies ten aanzien van temperatuur- en lichtsom
Uit het onderzoek naar temperatuursom en lichtsom zijn de volgende conclusies voortgekomen:

- De variatie in de ruimte-temperatuursom van de vruchten uit 2005 vertoont grote overeenkomsten met de variatie in de ruimte-temperatuursom van de vruchten uit 2004.
- De gemiddelde planttemperatuursom is 1026 graaddagen, dit is 50 - 60 graaddagen lager dan de gemiddelde ruimte-temperatuursom die 1072 graaddagen bedraagt. De variatie en spreiding van de verschillende planttemperatuursommen vertoont grote overeenkomsten met de variatie en spreiding van de ruimte-temperatuursommen. Bij de ruimte-temperatuursom varieert de spreiding van 825 tot 1522 graaddagen. Bij de planttemperatuursom is dit van 788 tot 1461 graaddagen.
- Zowel de ruimte-temperatuursommen als de planttemperatuursommen tonen teveel variatie om te gebruiken voor oogstvoorspelling.
De lichtsom van uitgegroeide vruchten heeft een zeer grote variatie. De gemiddelde lichtsom is 58793 joulesdagen met een variatie van 39378 tot 93496 joulesdagen. Deze variatie is groter dan de variatie die is gevonden bij de temperatuursommen. Lichtsom kan derhalve niet gebruikt worden voor oogstvoorspelling.

### 7.3 Conclusies ten aanzien van hardgroen

Uit het onderzoek naar het bepalen van hardgroen zijn de volgende conclusies naar voren gekomen:

- Het maken van eenduidige afspraken voor de bepaling van het moment hardgroen is niet mogelijk.
- Door de grote verschillen in doorkleurduur van vruchten na het moment hardgroen, is dit moment niet te gebruiken voor het voorspellen van het moment van oogst.
- Uit de grote verschillen in diametertoename blijkt dat de meeste vruchten op het moment hardgroen nog niet zijn uitgegroeid.
- Door de diametertoename is het niet mogelijk om de diameter op het moment hardgroen te gebruiken bij gewichtsvoorspelling en het voorspellen van sorteringklasse.

### 7.4 Conclusies ten aanzien van oogstvoorspeller paprika

Uit het vergelijkend onderzoek met betrekking tot de nauwkeurigheid van de modellen zijn de volgende conclusies voortgekomen:

- De nauwkeurigheid van de voorspellingen met de modellen A t/m D leveren grote verschillen op (van 99% tot maar 35% nauwkeurigheid).
- Tweewekelijks registreren levert nauwkeurigere voorspellingen op dan wekelijks registreren, namelijk een gemiddelde verbetering van 3%.
- Onderscheid maken tussen zetting op hoofd- en zijstengels levert een verwaarloosbare verbetering op (verbetering van 0,3%).
- Model A (68,35 %) en model C (68,57%) zijn de nauwkeurigste voorspellers, waarbij model A gebruiksvriendelijker is doordat de registratie en invoer minder tijd vergt.
- De methode voor voorspelling die van Ruijven hanteert is 55% nauwkeurig. In vergelijking met model A is dit ongeveer 15 % nauwkeuriger.
- In vergelijking met een productievoorspeller voor tomaat is model A 20% onnauwkeuriger.
- Een drietal mogelijke oorzaken voor de onnauwkeurige voorspellingen zijn:
  - Het voorspellen met vaste percentages voor de uitgroeiduur per zettingsdatum. Uit onderzoek blijkt dat deze percentages per zettingsdatum verschillen.
  - De registratieveldjes zijn niet altijd representatief. Uit onderzoek blijkt dat de registratieveldjes vanaf een bepaald moment consequent minder productie hebben in vergelijking tot de productie in de gehele afdeling.
Uit het onderzoek naar gewichtsvoorspelling en voorspelling van sorteringklasse zijn de volgende conclusies naar voren gekomen:

- Het is niet mogelijk om nauwkeurig het gewicht van individuele vruchten te voorspellen met behulp van de diameter bij oogst en de formule uit 2.2.4.
- Nauwkeurige gewichtsvoorspelling voor groepen vruchten van een bepaalde oogstdatum is wel mogelijk op basis van de diameter bij oogst en de formule uit 2.2.4.
- Praktische toepassing van gewichtsvoorspelling is zeer lastig aangezien er geen duidelijk moment is waarop de diameter niet meer toeneemt of een goede indicatie van de diameter bij oogst gegeven kan worden. Dit heeft ook te maken met de verschillen in duur tussen het moment dat de diameter constant blijft en het moment dat de vrucht geoogst wordt.
- Nauwkeurige voorspelling van het percentage vruchten per sorteringklasse is niet mogelijk. Dit komt doordat de steekproef uit de registratieveldjes te klein is om een representatieve voorspelling te doen. De invloed van een vrucht op het totaal aantal vruchten is te groot om nauwkeurige percentages te berekenen.
- Verder is de praktische toepassing voor het voorspellen van sorteringklasse zeer lastig aangezien een duidelijk moment ontbreekt waarop de diameter bij oogst bekend is.
8 Aanbevelingen

Uit het onderzoek zijn verschillende aanbevelingen naar voren gekomen voor vervolgonderzoek en aanpassingen aan het model. In dit hoofdstuk worden de aanbevelingen nogmaals weergegeven.

8.1 Aanbeveling model met aanpassingen

Uit het onderzoek is gebleken dat model A en model C de nauwkeurigste modellen zijn. Aangezien de registratie en invoer van model A minder tijd vergt wordt model A aanbevolen voor de stuksvoorspelling van paprika. Een gebruikershandleiding is opgenomen in bijlage 2.

Aangezien de nauwkeurigheid van model A nog te wensen overlaat, wordt aanbevolen om de volgende twee aanpassingen te maken in het model:

- Ten eerste wordt aanbevolen om het model zelfcorrigerend te maken. Dit kan door middel van een module waarbij de ingevoerde percentages automatisch verbeterd worden op het moment dat het percentage geoogste vruchten bekend is. Het percentage vruchten wat nog niet is geoogst, moet dan opnieuw verdeeld worden.

- Ten tweede wordt aanbevolen om een module in te bouwen ter controle van de representativiteit van de registratieveldjes. Wanneer de veldjes niet meer representatief zijn, dan moet deze module een automatische correctie op de voorspelling uitvoeren. Dit kan door de gerealiseerde productie uit de veldjes te vergelijken met de gerealiseerde productie uit de gehele productieafdeling.

Aanbevolen wordt om bij model A een oogstschema in te bouwen. In dit oogstschema zou het mogelijk moeten zijn om aan te geven hoeveel procent van de totale oppervlakte op welke dag geoogst gaat worden. Met behulp van deze informatie moet het model via een module uitrekenen hoeveel er per dag en per week geoogst gaat worden.

8.2 Aanbevelingen ten aanzien van voorspelling gewicht en sortering

Aanbevolen wordt om gewichtsvoorspelling te doen op basis van de diameter bij oogst en de formule \[ \text{Vruchtgewicht} = 4,445 \times \text{vruchtdiameter} - 171,6. \]

Bij de voorspelling van sortering dient rekening gehouden te worden met de grootte van de steekproef. Dit kan enerzijds door een grotere steekproef te nemen, waarbij gebruik gemaakt wordt van de methode van Ruijven door wekelijks in te schatten welke vruchten geoogst gaan worden en hiervan de diameter te meten. Anderzijds is het mogelijk om de vruchten in de laagste en hoogste sorteringklasse minder zwaar mee te laten wegen.

Grootste probleem bij de voorspelling van het gewicht en de sortering is het moment waarop de uiteindelijke diameter bekend is. Bij zetting en op het moment hardgroen is deze nog niet bekend. Een oplossing zou zijn om vanaf het moment hardgroen de vrucht tweewekelijks te meten om zo vast te stellen wanneer de vrucht niet meer in diameter toeneemt. Probleem hierbij is dat dit geen vast moment voor oogst is. Hierdoor is het onbekend wanneer de vruchten geoogst worden en is het praktisch moeilijk om het voorspellen van gewicht en sortering in een model op te nemen.
Om te onderzoeken of er nog praktische mogelijkheden zijn voor het integreren van gewichtsvoorspelling in een model wordt het volgende aanbevolen. In hoeverre is het, met zelfcorrigerende percentages voor de verschillende doorkleurduren (moment hardgroen tot oogst), mogelijk om het oogstmoment nauwkeurig te voorspellen. Vervolgens moet onderzocht worden of het mogelijk is om via een bijtelling bij de diameter op het moment hardgroen, het gewicht nauwkeurig te voorspellen is. Op basis van de diameter met bijtelling kan dan voorspeld worden in welke sorteringklasse vruchten terechtkomen. Als laatste zal onderzocht moeten worden of deze combinatie een goede stuks-, kilo- en sorteringvoorspelling geeft.

Een tweede optie voor gewichtsvoorspelling is de methode van Van Ruijven. Door wekelijks de diameter te meten van de vruchten, waarvan verwacht wordt dat ze de week erop geoogst gaan worden, kan een gewichtsvoorspelling gemaakt worden. Onderzoek moet plaatsvinden om te kijken hoe nauwkeurig deze methode is.

8.3 **Aanbevelingen voor vervolgonderzoek**

Enkele aanbevelingen voor vervolgonderzoek zijn als volgt:

- Het vergelijken van de voorspellingen van model A met Prozet en een voorspellingsmodel ontwikkeld door Fokke Buwalda van de WUR.
- Het ‘achteraf voorspellen’ van de productie met de werkelijke percentages van de uitgroeiduur. Hiermee kan de onnauwkeurigheid van het voorspellen met vaste percentages in beeld gebracht worden. Deze analyse zou plaats kunnen vinden met behulp van het programma Prozet.
- Contact opnemen met het proefstation der Noorderkempen om informatie uit te wisselen over hun ervaringen met productievoorspelling van paprika.
Bijlage 1 Frequentietabel doorkleurduur

Tabel B1.1: Frequentietabel doorkleurduren (traject moment hardgroen tot oogst) in dagen.

<table>
<thead>
<tr>
<th>Doorkleurduur (dagen)</th>
<th>Totaal aantal vruchten</th>
<th>Frequentie</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>50</td>
<td>10,4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>29</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>115</td>
<td>24,0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>48</td>
<td>10,0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>61</td>
<td>12,7</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>49</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>7</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>0,8</td>
<td></td>
</tr>
</tbody>
</table>
Bijlage 2 Gebruikershandleiding model A

Model A berekent op basis van de invoer van enkele gegevens de ‘theoretische’ oogstdatum voor gezette vruchten. Dit gebeurt aan de hand van de zettingcijfers, de abortiecijfers en een aantal vaste uitgroeipercentages. In deze gebruikershandleiding wordt uitgelegd hoe deze gegevens ingevoerd dienen te worden.

Ten eerste wordt toegelicht hoe de registratie van zetting en abortie plaats dient te vinden.

- Wekelijks dient de registratie op twee vaste dagen uitgevoerd te worden.
- Op deze dagen wordt in de veldjes bekeken of er nieuwe vruchtjes gezet zijn. Een vruchtje is gezet wanneer deze minstens 10 mm in doorsnede is. Voor de bepaling van deze doorsnede is het van belang dat er gewerkt wordt met een maatstokje.
- Nieuw gezette vruchten dienen gelabeld te worden met een label waarop de zettingsdatum is vermeld.
- Als laatste dient elke registratiedag het aantal geaborteerde vruchten geteld te worden. Dit gebeurd door te bekijken bij welke labels geen vrucht meer aanwezig is. De datum op deze label moet geregistreerd worden in combinatie met de datum van abortie. Labels van geaborteerde vruchten dienen verwijderd te worden.

De start van het model bij een nieuwe teelt begint met het invoeren van enkele algemene gegevens op de sheet ‘Invoer Registratie’. Dit gebeurt in een kader dat is weergegeven in figuur B2.1.

<table>
<thead>
<tr>
<th>Algemene gegevens</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>weeknummer start registratie</td>
<td>1</td>
</tr>
<tr>
<td>datum maandag startweek</td>
<td>2</td>
</tr>
<tr>
<td>aantal weken in het jaar</td>
<td>3</td>
</tr>
<tr>
<td>plantdichtheid</td>
<td>4  st/m²</td>
</tr>
<tr>
<td>aantal planten in telveld</td>
<td>5</td>
</tr>
<tr>
<td>totale oppervlakte kas (netto)</td>
<td>6  m²</td>
</tr>
</tbody>
</table>

Figuur B2.1: Kader voor invoer algemene gegevens nieuwe teelt.

Onderstaande nummers corresponderen met de nummers in de grijze vakjes. Per nummer is weergegeven welke invoer bij betreffend nummer hoort.

1. Het weeknummer waarin voor de eerste maal registratie van zetting plaats vindt.
2. De datum van de maandag in de eerste week waarin registratie heeft plaatsgevonden.
3. Het aantal weken in het jaar. (52 of 53 weken)
4. De plantdichtheid in stengels per m².
5. Het totaal aantal planten in de verschillende telvelden.
6. Totale oppervlakte van de productieafdeling of kas.
Wanneer de algemene gegevens zijn ingevuld dan is er voor elke registratieweek een kader voor de invoer van zetting- en abortiecijfers. Dit kader wordt weergegeven in figuur B2.2.

In dit kader moet onder de 1 t/m 3 de volgende gegevens ingevoerd worden:
1. De twee data waarop registratie heeft plaatsgevonden in de betreffende week.
2. Het totaal aantal gezette vruchten op de registratiedata.
3. Het aantal geaborteerde vruchten op de registratiedata. Hierbij moeten de geaborteerde vruchten gesorteerd worden op zettingsdatum.

NB: de weeknummers en de zettingsdata onder abortie worden automatisch berekend.

Figuur B2.2: Kader voor de tweewekelijkse invoer van zetting- en abortiecijfers.

Bijlage 3 Frequentietabellen uitgroei- en zettingduur 2004 en 2005


<table>
<thead>
<tr>
<th>Frequentie</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>46</td>
<td>68</td>
<td>92</td>
</tr>
<tr>
<td>47</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>190</td>
<td>77</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>52</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>53</td>
<td>46</td>
<td>11</td>
</tr>
<tr>
<td>54</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>59</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>63</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>66</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabel 3.2: Frequentietabel zettingsduur (fase 0 tot fase 2) in dagen van 2004 en 2005.

<table>
<thead>
<tr>
<th>Frequentie</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>225</td>
<td>190</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Figuur 3.2: Frequentiediagram zettingsduur (fase 0 tot fase 2) van 2004 en 2005.

Tabel 3.3: Frequentietabel totale duur (fase 0 tot oogst) in dagen van 2004 en 2005.

<table>
<thead>
<tr>
<th>Frequentie</th>
<th>2005</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>46</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>47</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>51</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>42</td>
<td>31</td>
</tr>
<tr>
<td>53</td>
<td>68</td>
<td>98</td>
</tr>
<tr>
<td>54</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>55</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>107</td>
<td>61</td>
</tr>
<tr>
<td>57</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>34</td>
<td>23</td>
</tr>
<tr>
<td>61</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>63</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>65</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>66</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>68</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>71</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>73</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>77</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>81</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Figuur 3.3: Frequentiediagram totale duur (fase 0 tot oogst) van 2004 en 2005.
Bijlage 4 Gewichtsvoorspelling

Onderstaand overzicht geeft de nauwkeurigheid aan voor gewichtsvoorspelling aan individuele vruchten.

Tabel 4.1a: Gemiddelde nauwkeurigheid gewichtsvoorspelling aan individuele vruchten met maximale over- en onderschatting

<table>
<thead>
<tr>
<th>Diameter</th>
<th># vruchten</th>
<th>Gewicht met formule</th>
<th>Gemiddelde afwijking t.o.v. werkelijk gewicht</th>
<th>Maximale overschatting</th>
<th>Maximale onderschatting</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>2</td>
<td>86.2</td>
<td>43.7%</td>
<td>43.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>61</td>
<td>3</td>
<td>99.5</td>
<td>16.4%</td>
<td>24.4%</td>
<td>0.5%</td>
</tr>
<tr>
<td>62</td>
<td>3</td>
<td>104.0</td>
<td>12.7%</td>
<td>30.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>108.4</td>
<td>22.0%</td>
<td>35.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>64</td>
<td>7</td>
<td>112.9</td>
<td>19.0%</td>
<td>41.1%</td>
<td>5.9%</td>
</tr>
<tr>
<td>65</td>
<td>3</td>
<td>117.3</td>
<td>12.3%</td>
<td>17.3%</td>
<td>2.2%</td>
</tr>
<tr>
<td>66</td>
<td>6</td>
<td>121.8</td>
<td>25.6%</td>
<td>52.2%</td>
<td>13.0%</td>
</tr>
<tr>
<td>67</td>
<td>9</td>
<td>126.2</td>
<td>16.0%</td>
<td>57.8%</td>
<td>9.8%</td>
</tr>
<tr>
<td>68</td>
<td>8</td>
<td>130.7</td>
<td>33.9%</td>
<td>63.3%</td>
<td>6.7%</td>
</tr>
<tr>
<td>69</td>
<td>9</td>
<td>135.1</td>
<td>13.7%</td>
<td>35.1%</td>
<td>15.6%</td>
</tr>
<tr>
<td>70</td>
<td>15</td>
<td>139.6</td>
<td>13.4%</td>
<td>74.4%</td>
<td>12.8%</td>
</tr>
<tr>
<td>71</td>
<td>14</td>
<td>144.0</td>
<td>15.0%</td>
<td>44.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>72</td>
<td>11</td>
<td>148.4</td>
<td>12.2%</td>
<td>23.7%</td>
<td>17.5%</td>
</tr>
<tr>
<td>73</td>
<td>24</td>
<td>152.9</td>
<td>15.7%</td>
<td>91.1%</td>
<td>15.1%</td>
</tr>
<tr>
<td>74</td>
<td>17</td>
<td>157.3</td>
<td>8.5%</td>
<td>12.4%</td>
<td>21.3%</td>
</tr>
<tr>
<td>75</td>
<td>14</td>
<td>161.8</td>
<td>10.3%</td>
<td>61.8%</td>
<td>19.1%</td>
</tr>
<tr>
<td>76</td>
<td>22</td>
<td>166.2</td>
<td>10.7%</td>
<td>18.7%</td>
<td>16.9%</td>
</tr>
<tr>
<td>77</td>
<td>17</td>
<td>170.7</td>
<td>10.3%</td>
<td>6.7%</td>
<td>22.4%</td>
</tr>
<tr>
<td>78</td>
<td>21</td>
<td>175.1</td>
<td>11.2%</td>
<td>25.1%</td>
<td>20.4%</td>
</tr>
<tr>
<td>79</td>
<td>21</td>
<td>179.6</td>
<td>12.0%</td>
<td>28.3%</td>
<td>25.2%</td>
</tr>
<tr>
<td>80</td>
<td>33</td>
<td>184.0</td>
<td>7.4%</td>
<td>15.0%</td>
<td>16.4%</td>
</tr>
<tr>
<td>81</td>
<td>34</td>
<td>188.4</td>
<td>8.4%</td>
<td>34.6%</td>
<td>14.3%</td>
</tr>
<tr>
<td>82</td>
<td>34</td>
<td>192.9</td>
<td>6.9%</td>
<td>20.6%</td>
<td>12.3%</td>
</tr>
<tr>
<td>83</td>
<td>38</td>
<td>197.3</td>
<td>7.2%</td>
<td>23.3%</td>
<td>17.8%</td>
</tr>
<tr>
<td>84</td>
<td>41</td>
<td>201.8</td>
<td>7.3%</td>
<td>12.1%</td>
<td>15.9%</td>
</tr>
<tr>
<td>85</td>
<td>58</td>
<td>206.2</td>
<td>7.9%</td>
<td>14.6%</td>
<td>14.1%</td>
</tr>
<tr>
<td>86</td>
<td>50</td>
<td>210.7</td>
<td>7.1%</td>
<td>17.0%</td>
<td>19.0%</td>
</tr>
<tr>
<td>87</td>
<td>37</td>
<td>215.1</td>
<td>7.6%</td>
<td>19.5%</td>
<td>17.3%</td>
</tr>
<tr>
<td>88</td>
<td>42</td>
<td>219.6</td>
<td>6.3%</td>
<td>9.8%</td>
<td>15.6%</td>
</tr>
<tr>
<td>89</td>
<td>44</td>
<td>224.0</td>
<td>8.3%</td>
<td>40.0%</td>
<td>13.8%</td>
</tr>
<tr>
<td>90</td>
<td>40</td>
<td>228.5</td>
<td>6.0%</td>
<td>26.9%</td>
<td>12.1%</td>
</tr>
<tr>
<td>91</td>
<td>40</td>
<td>232.9</td>
<td>6.1%</td>
<td>5.9%</td>
<td>16.8%</td>
</tr>
<tr>
<td>92</td>
<td>23</td>
<td>237.3</td>
<td>6.2%</td>
<td>18.7%</td>
<td>15.2%</td>
</tr>
<tr>
<td>93</td>
<td>25</td>
<td>241.8</td>
<td>6.4%</td>
<td>34.3%</td>
<td>19.4%</td>
</tr>
<tr>
<td>94</td>
<td>9</td>
<td>246.2</td>
<td>8.5%</td>
<td>23.1%</td>
<td>12.1%</td>
</tr>
<tr>
<td>95</td>
<td>9</td>
<td>250.7</td>
<td>4.6%</td>
<td>4.4%</td>
<td>10.5%</td>
</tr>
<tr>
<td>96</td>
<td>10</td>
<td>255.1</td>
<td>7.8%</td>
<td>6.3%</td>
<td>15.0%</td>
</tr>
<tr>
<td>97</td>
<td>9</td>
<td>259.6</td>
<td>6.5%</td>
<td>8.2%</td>
<td>13.5%</td>
</tr>
<tr>
<td>98</td>
<td>5</td>
<td>264.0</td>
<td>4.9%</td>
<td>1.5%</td>
<td>5.7%</td>
</tr>
<tr>
<td>99</td>
<td>3</td>
<td>268.5</td>
<td>6.1%</td>
<td>11.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>272.9</td>
<td>4.2%</td>
<td>0.0%</td>
<td>9.0%</td>
</tr>
<tr>
<td>101</td>
<td>3</td>
<td>277.3</td>
<td>9.5%</td>
<td>0.0%</td>
<td>13.3%</td>
</tr>
<tr>
<td>103</td>
<td>3</td>
<td>286.2</td>
<td>2.2%</td>
<td>2.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>105</td>
<td>2</td>
<td>295.1</td>
<td>13.5%</td>
<td>13.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>106</td>
<td>2</td>
<td>299.6</td>
<td>3.3%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Totaal 826  Gemiddeld 11.2%  25.6%  11.9%
Bijlage 5 Duur diameter constant - oogst

Bijlage 5.1 Duur tussen het moment diameter vrucht constant en het moment van oogst.